Error analysis of some finite element methods for the Stokes problem
Author:
Rolf Stenberg
Journal:
Math. Comp. 54 (1990), 495-508
MSC:
Primary 65N30; Secondary 65N15
DOI:
https://doi.org/10.1090/S0025-5718-1990-1010601-X
MathSciNet review:
1010601
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove the optimal order of convergence for some two-dimensional finite element methods for the Stokes equations. First we consider methods of the Taylor-Hood type: the triangular ${P_3} - {P_2}$ element and the ${Q_k} - {Q_{k - 1}},$, $k \geq 2$, family of quadrilateral elements. Then we introduce two new low-order methods with piecewise constant approximations for the pressure. The analysis is performed using our macroelement technique, which is reviewed in a slightly altered form.
- Ivo Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1972/73), 179–192. MR 359352, DOI https://doi.org/10.1007/BF01436561 I. Babuška and A. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations (A. Aziz, ed.), Academic Press, New York, 1973, pp. 5-359.
- I. Babuška, J. Osborn, and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp. 35 (1980), no. 152, 1039–1062. MR 583486, DOI https://doi.org/10.1090/S0025-5718-1980-0583486-7
- M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math. 33 (1979), no. 2, 211–224. MR 549450, DOI https://doi.org/10.1007/BF01399555
- J. M. Boland and R. A. Nicolaides, Stability of finite elements under divergence constraints, SIAM J. Numer. Anal. 20 (1983), no. 4, 722–731. MR 708453, DOI https://doi.org/10.1137/0720048
- F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129–151 (English, with French summary). MR 365287
- Franco Brezzi and Richard S. Falk, Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal. 28 (1991), no. 3, 581–590. MR 1098408, DOI https://doi.org/10.1137/0728032
- Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739
- Michel Fortin, Old and new finite elements for incompressible flows, Internat. J. Numer. Methods Fluids 1 (1981), no. 4, 347–364. MR 633812, DOI https://doi.org/10.1002/fld.1650010406
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383
- J. Pitkäranta and R. Stenberg, Analysis of some mixed finite element methods for plane elasticity equations, Math. Comp. 41 (1983), no. 164, 399–423. MR 717693, DOI https://doi.org/10.1090/S0025-5718-1983-0717693-X
- L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 111–143 (English, with French summary). MR 813691, DOI https://doi.org/10.1051/m2an/1985190101111
- Rolf Stenberg, Analysis of mixed finite elements methods for the Stokes problem: a unified approach, Math. Comp. 42 (1984), no. 165, 9–23. MR 725982, DOI https://doi.org/10.1090/S0025-5718-1984-0725982-9
- Rolf Stenberg, On some three-dimensional finite elements for incompressible media, Comput. Methods Appl. Mech. Engrg. 63 (1987), no. 3, 261–269. MR 911612, DOI https://doi.org/10.1016/0045-7825%2887%2990072-7
- R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Anal. Numér. 18 (1984), no. 2, 175–182. MR 743884, DOI https://doi.org/10.1051/m2an/1984180201751
Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N15
Retrieve articles in all journals with MSC: 65N30, 65N15
Additional Information
Article copyright:
© Copyright 1990
American Mathematical Society