Symmetrizable finite difference operators
HTML articles powered by AMS MathViewer
- by Bruce A. Wade PDF
- Math. Comp. 54 (1990), 525-543 Request permission
Abstract:
We introduce the notion of a symmetrizable finite difference operator and prove that such operators are stable. We then present some sufficient conditions for symmetrizability. One of these extends H.-O. Kreiss’ theorem on dissipative difference schemes for hyperbolic equations to a more general case with full (x, t)-variable coefficients.References
- K. P. Bube and J. C. Strikwerda, Interior regularity estimates for elliptic systems of difference equations, SIAM J. Numer. Anal. 20 (1983), no. 4, 653–670. MR 708449, DOI 10.1137/0720044
- Jacques Chazarain and Alain Piriou, Introduction to the theory of linear partial differential equations, Studies in Mathematics and its Applications, vol. 14, North-Holland Publishing Co., Amsterdam-New York, 1982. Translated from the French. MR 678605
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- Heinz-Otto Kreiss, On difference approximations of the dissipative type for hyperbolic differential equations, Comm. Pure Appl. Math. 17 (1964), 335–353. MR 166937, DOI 10.1002/cpa.3160170306
- Heinz-Otto Kreiss, Über sachgemässe Cauchyprobleme, Math. Scand. 13 (1963), 109–128 (German). MR 168921, DOI 10.7146/math.scand.a-10694
- P. D. Lax and L. Nirenberg, On stability for difference schemes: A sharp form of Gȧrding’s inequality, Comm. Pure Appl. Math. 19 (1966), 473–492. MR 206534, DOI 10.1002/cpa.3160190409
- Daniel Michelson, Stability theory of difference approximations for multidimensional initial-boundary value problems, Math. Comp. 40 (1983), no. 161, 1–45. MR 679433, DOI 10.1090/S0025-5718-1983-0679433-2
- John J. H. Miller, On power-bounded operators and operators satisfying a resolvent condition, Numer. Math. 10 (1967), 389–396. MR 220080, DOI 10.1007/BF02162872
- Beresford Parlett, Accuracy and dissipation in difference schemes, Comm. Pure Appl. Math. 19 (1966), 111–123. MR 196957, DOI 10.1002/cpa.3160190109
- Robert D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, 2nd ed., Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0220455
- Hisayoshi Shintani and Kenji Tomoeda, Stability of difference schemes for nonsymmetric linear hyperbolic systems with variable coefficients, Hiroshima Math. J. 7 (1977), no. 1, 309–378. MR 448930
- John C. Strikwerda and Bruce A. Wade, An extension of the Kreiss matrix theorem, SIAM J. Numer. Anal. 25 (1988), no. 6, 1272–1278. MR 972453, DOI 10.1137/0725071
- Eitan Tadmor, The equivalence of $L_{2}$-stability, the resolvent condition, and strict $H$-stability, Linear Algebra Appl. 41 (1981), 151–159. MR 649723, DOI 10.1016/0024-3795(81)90095-1 M. E. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N. J., 1984.
- Robert Vichnevetsky and John B. Bowles, Fourier analysis of numerical approximations of hyperbolic equations, SIAM Studies in Applied Mathematics, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1982. With a foreword by Garrett Birkhoff. MR 675265 B. A. Wade, Stability and sharp convergence estimates for symmetrizable difference operators, Ph. D. dissertation, University of Wisconsin-Madison, 1987.
- Olof B. Widlund, On the stability of parabolic difference schemes, Math. Comp. 19 (1965), 1–13. MR 170479, DOI 10.1090/S0025-5718-1965-0170479-9
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 54 (1990), 525-543
- MSC: Primary 65M10
- DOI: https://doi.org/10.1090/S0025-5718-1990-1011447-9
- MathSciNet review: 1011447