## Symmetrizable finite difference operators

HTML articles powered by AMS MathViewer

- by Bruce A. Wade PDF
- Math. Comp.
**54**(1990), 525-543 Request permission

## Abstract:

We introduce the notion of a symmetrizable finite difference operator and prove that such operators are stable. We then present some sufficient conditions for symmetrizability. One of these extends H.-O. Kreiss’ theorem on dissipative difference schemes for hyperbolic equations to a more general case with full (*x, t*)-variable coefficients.

## References

- K. P. Bube and J. C. Strikwerda,
*Interior regularity estimates for elliptic systems of difference equations*, SIAM J. Numer. Anal.**20**(1983), no. 4, 653–670. MR**708449**, DOI 10.1137/0720044 - Jacques Chazarain and Alain Piriou,
*Introduction to the theory of linear partial differential equations*, Studies in Mathematics and its Applications, vol. 14, North-Holland Publishing Co., Amsterdam-New York, 1982. Translated from the French. MR**678605** - Tosio Kato,
*Perturbation theory for linear operators*, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR**0407617** - Heinz-Otto Kreiss,
*On difference approximations of the dissipative type for hyperbolic differential equations*, Comm. Pure Appl. Math.**17**(1964), 335–353. MR**166937**, DOI 10.1002/cpa.3160170306 - Heinz-Otto Kreiss,
*Über sachgemässe Cauchyprobleme*, Math. Scand.**13**(1963), 109–128 (German). MR**168921**, DOI 10.7146/math.scand.a-10694 - P. D. Lax and L. Nirenberg,
*On stability for difference schemes: A sharp form of Gȧrding’s inequality*, Comm. Pure Appl. Math.**19**(1966), 473–492. MR**206534**, DOI 10.1002/cpa.3160190409 - Daniel Michelson,
*Stability theory of difference approximations for multidimensional initial-boundary value problems*, Math. Comp.**40**(1983), no. 161, 1–45. MR**679433**, DOI 10.1090/S0025-5718-1983-0679433-2 - John J. H. Miller,
*On power-bounded operators and operators satisfying a resolvent condition*, Numer. Math.**10**(1967), 389–396. MR**220080**, DOI 10.1007/BF02162872 - Beresford Parlett,
*Accuracy and dissipation in difference schemes*, Comm. Pure Appl. Math.**19**(1966), 111–123. MR**196957**, DOI 10.1002/cpa.3160190109 - Robert D. Richtmyer and K. W. Morton,
*Difference methods for initial-value problems*, 2nd ed., Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455** - Hisayoshi Shintani and Kenji Tomoeda,
*Stability of difference schemes for nonsymmetric linear hyperbolic systems with variable coefficients*, Hiroshima Math. J.**7**(1977), no. 1, 309–378. MR**448930** - John C. Strikwerda and Bruce A. Wade,
*An extension of the Kreiss matrix theorem*, SIAM J. Numer. Anal.**25**(1988), no. 6, 1272–1278. MR**972453**, DOI 10.1137/0725071 - Eitan Tadmor,
*The equivalence of $L_{2}$-stability, the resolvent condition, and strict $H$-stability*, Linear Algebra Appl.**41**(1981), 151–159. MR**649723**, DOI 10.1016/0024-3795(81)90095-1
M. E. Taylor, - Robert Vichnevetsky and John B. Bowles,
*Fourier analysis of numerical approximations of hyperbolic equations*, SIAM Studies in Applied Mathematics, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1982. With a foreword by Garrett Birkhoff. MR**675265**
B. A. Wade, - Olof B. Widlund,
*On the stability of parabolic difference schemes*, Math. Comp.**19**(1965), 1–13. MR**170479**, DOI 10.1090/S0025-5718-1965-0170479-9

*Pseudodifferential operators*, Princeton Univ. Press, Princeton, N. J., 1984.

*Stability and sharp convergence estimates for symmetrizable difference operators*, Ph. D. dissertation, University of Wisconsin-Madison, 1987.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp.
**54**(1990), 525-543 - MSC: Primary 65M10
- DOI: https://doi.org/10.1090/S0025-5718-1990-1011447-9
- MathSciNet review: 1011447