Convergence properties of a class of product formulas for weakly singular integral equations
Authors:
Giuliana Criscuolo, Giuseppe Mastroianni and Giovanni Monegato
Journal:
Math. Comp. 55 (1990), 213-230
MSC:
Primary 65R20; Secondary 45L05
DOI:
https://doi.org/10.1090/S0025-5718-1990-1023045-1
MathSciNet review:
1023045
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We examine the convergence of product quadrature formulas of interpolatory type, based on the zeros of certain generalized Jacobi polynomials, for the discretization of integrals of the type \[ \int _{ - 1}^1 {K(x,y)f(x) dx,} \quad - 1 \leq y \leq 1,\] where the kernel $K(x,y)$ is weakly singular and the function $f(x)$ has singularities only at the endpoints $\pm 1$. In particular, when $K(x,y) = \log |x - y|$, $K(x,y) = |x - y{|^v}$, $v > - 1$, and $f(x)$ has algebraic singularities of the form ${(1 \pm x)^\sigma }$, $\sigma > - 1$, we prove that the uniform rate of convergence of the rules is $O({m^{ - 2 - 2\sigma }}{\log ^2}m)$ in the case of the first kernel, and $O({m^{ - 2 - 2\sigma - 2v}}\log m)$ if $v \leq 0$, or $O({m^{ - 2 - 2\sigma }}\log m)$ if $v > 0$, for the second, where m is the number of points in the quadrature rule.
- N. I. Achieser, Theory of approximation, Frederick Ungar Publishing Co., New York, 1956. Translated by Charles J. Hyman. MR 0095369
- Kendall E. Atkinson, A survey of numerical methods for the solution of Fredholm integral equations of the second kind, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR 0483585
- Helmut Brass, A remark on best $L^1$-approximation by polynomials, J. Approx. Theory 52 (1988), no. 3, 359â361. MR 934800, DOI https://doi.org/10.1016/0021-9045%2888%2990049-4
- M. M. Chawla and M. K. Jain, Asymptotic error estimates for the Gauss quadrature formula, Math. Comp. 22 (1968), 91â97. MR 223094, DOI https://doi.org/10.1090/S0025-5718-1968-0223094-5
- Giuliana Criscuolo and Giuseppe Mastroianni, Mean and uniform convergence of quadrature rules for evaluating the finite Hilbert transform, Progress in approximation theory, Academic Press, Boston, MA, 1991, pp. 141â175. MR 1114771
- H. Gonska and E. Hinnemann, Punktweise AbschĂ€tzungen zur Approximation durch algebraische Polynome, Acta Math. Hungar. 46 (1985), no. 3-4, 243â254 (German). MR 832716, DOI https://doi.org/10.1007/BF01955736
- Ivan G. Graham, Singularity expansions for the solutions of second kind Fredholm integral equations with weakly singular convolution kernels, J. Integral Equations 4 (1982), no. 1, 1â30. MR 640534
- Martin KĂŒtz, Asymptotic error bounds for a class of interpolatory quadratures, SIAM J. Numer. Anal. 21 (1984), no. 1, 167â175. MR 731220, DOI https://doi.org/10.1137/0721011
- D. S. Lubinsky and P. Rabinowitz, Rates of convergence of Gaussian quadrature for singular integrands, Math. Comp. 43 (1984), no. 167, 219â242. MR 744932, DOI https://doi.org/10.1090/S0025-5718-1984-0744932-2
- G. Monegato and V. Colombo, Product integration for the linear transport equation in slab geometry, Numer. Math. 52 (1988), no. 2, 219â240. MR 923711, DOI https://doi.org/10.1007/BF01398690
- Giovanni Monegato, Orthogonal polynomials and product integration for one-dimensional Fredholm integral equations with ânastyâ kernels, Proceedings of the 9th Conference on Problems and Methods in Mathematical Physics (9.TMP) (Karl-Marx-Stadt, 1988) Teubner-Texte Math., vol. 111, Teubner, Leipzig, 1989, pp. 185â192. MR 1087321
- Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. MR 519926, DOI https://doi.org/10.1090/memo/0213
- G. P. Nevai, Mean convergence of Lagrange interpolation. I, J. Approximation Theory 18 (1976), no. 4, 363â377. MR 425420, DOI https://doi.org/10.1016/0021-9045%2876%2990008-3
- Paul Nevai, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc. 282 (1984), no. 2, 669â698. MR 732113, DOI https://doi.org/10.1090/S0002-9947-1984-0732113-4
- G. R. Richter, On weakly singular Fredholm integral equations with displacement kernels, J. Math. Anal. Appl. 55 (1976), no. 1, 32â42. MR 407549, DOI https://doi.org/10.1016/0022-247X%2876%2990275-4
- Paul Otto Runck, Bemerkungen zu den ApproximationssĂ€tzen von Jackson und Jackson-Timan, Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968) BirkhĂ€user, Basel, 1969, pp. 303â308 (German). MR 0265831
- Claus Schneider, Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equations Operator Theory 2 (1979), no. 1, 62â68. MR 532739, DOI https://doi.org/10.1007/BF01729361
- Claus Schneider, Product integration for weakly singular integral equations, Math. Comp. 36 (1981), no. 153, 207â213. MR 595053, DOI https://doi.org/10.1090/S0025-5718-1981-0595053-0
- Ian H. Sloan and William E. Smith, Properties of interpolatory product integration rules, SIAM J. Numer. Anal. 19 (1982), no. 2, 427â442. MR 650061, DOI https://doi.org/10.1137/0719027
- William E. Smith and Ian H. Sloan, Product-integration rules based on the zeros of Jacobi polynomials, SIAM J. Numer. Anal. 17 (1980), no. 1, 1â13. MR 559455, DOI https://doi.org/10.1137/0717001
- G. Vainikko and A. Pedas, The properties of solutions of weakly singular integral equations, J. Austral. Math. Soc. Ser. B 22 (1980/81), no. 4, 419â430. MR 626933, DOI https://doi.org/10.1017/S0334270000002769
- G. Vainikko and P. Uba, A piecewise polynomial approximation to the solution of an integral equation with weakly singular kernel, J. Austral. Math. Soc. Ser. B 22 (1980/81), no. 4, 431â438. MR 626934, DOI https://doi.org/10.1017/S0334270000002770
Retrieve articles in Mathematics of Computation with MSC: 65R20, 45L05
Retrieve articles in all journals with MSC: 65R20, 45L05
Additional Information
Article copyright:
© Copyright 1990
American Mathematical Society