Boundedness of dispersive difference schemes
HTML articles powered by AMS MathViewer
- by Donald Estep, Michael Loss and Jeffrey Rauch PDF
- Math. Comp. 55 (1990), 55-87 Request permission
Abstract:
The pointwise behavior of dispersive difference schemes for the simple wave equation in one dimension is analyzed. If the initial data are in certain Besov spaces, the scheme is shown to be pointwise unbounded. Boundedness is shown when the initial data are of bounded variation.References
- Mats Y. T. Apelkrans, On difference schemes for hyperbolic equations with discontinuous initial values, Math. Comp. 22 (1968), 525–539. MR 233527, DOI 10.1090/S0025-5718-1968-0233527-6
- V. I. Arnol′d, Singularities of smooth mappings, Uspehi Mat. Nauk 23 (1968), no. 1, 3–44 (Russian). MR 0226655 —, Singularity theory, Cambridge Univ. Press, New York, 1981.
- Philip Brenner and Vidar Thomée, Stability and convergence rates in $L_{p}$ for certain difference schemes, Math. Scand. 27 (1970), 5–23. MR 278549, DOI 10.7146/math.scand.a-10983
- Philip Brenner and Vidar Thomée, Estimates near discontinuities for some difference schemes, Math. Scand. 28 (1971), 329–340 (1972). MR 305613, DOI 10.7146/math.scand.a-11028
- Philip Brenner, Vidar Thomée, and Lars B. Wahlbin, Besov spaces and applications to difference methods for initial value problems, Lecture Notes in Mathematics, Vol. 434, Springer-Verlag, Berlin-New York, 1975. MR 0461121
- C. Chester, B. Friedman, and F. Ursell, An extension of the method of steepest descents, Proc. Cambridge Philos. Soc. 53 (1957), 599–611. MR 90690, DOI 10.1017/s0305004100032655
- Raymond C. Y. Chin, Dispersion and Gibbs phenomenon associated with difference approximations to initial boundary-value problems for hyperbolic equations, J. Comput. Phys. 18 (1975), no. 3, 233–247. MR 391530, DOI 10.1016/0021-9991(75)90001-7
- R. C. Y. Chin and G. W. Hedstrom, A dispersion analysis for difference schemes: tables of generalized Airy functions, Math. Comp. 32 (1978), no. 144, 1163–1170. MR 494982, DOI 10.1090/S0025-5718-1978-0494982-6 D. J. Estep, ${L^\infty }$ bounds for families of translation invariant, ${L^2}$ stable operators in one dimension, Ph.D. thesis, The University of Michigan, 1987.
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518
- G. W. Hedstrom, The near-stability of the Lax-Wendroff method, Numer. Math. 7 (1965), 73–77. MR 174182, DOI 10.1007/BF01397974
- G. W. Hedstrom, The rate of convergence of some difference schemes, SIAM J. Numer. Anal. 5 (1968), 363–406. MR 230489, DOI 10.1137/0705031 L. Hörmander, Estimates for translation invariant operators in ${L^p}$ spaces, Acta. Math. 104 (1960), 93-140. —, Linear partial differential equations, vol. 1, Springer-Verlag, New York, 1983. F. John, Partial differential equations, 4th ed., Springer-Verlag, New York, 1982.
- N. Levinson, Transformation of an analytic function of several variables to a canonical form, Duke Math. J. 28 (1961), 345–353. MR 145101
- Jaak Peetre and Vidar Thomée, On the rate of convergence for discrete initial-value problems, Math. Scand. 21 (1967), 159–176 (1969). MR 255085, DOI 10.7146/math.scand.a-10856
- Robert D. Richtmyer and K. W. Morton, Difference methods for initial-value problems, 2nd ed., Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0220455
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
- E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR 864375 V. Thomée, On the rate of convergence of difference schemes for hyperbolic equations, Numerical Solution of Partial Differential Equations. II (B. Hubbard, ed.), Academic Press, New York, 1971, pp. 585-622.
- Lloyd N. Trefethen, Group velocity in finite difference schemes, SIAM Rev. 24 (1982), no. 2, 113–136. MR 652463, DOI 10.1137/1024038 —, Dispersion, dissipation and stability, Numerical Analysis (D. F. Griffiths and G. A. Watson, eds.), Longman, 1986.
- Stephen Wainger, Averages and singular integrals over lower-dimensional sets, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 357–421. MR 864376
- G. B. Whitham, Linear and nonlinear waves, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0483954 K. Yosida, Functional analysis, 6th ed., Springer-Verlag, New York, 1982.
- E. C. Zeeman, Catastrophe theory, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977. Selected papers, 1972–1977. MR 0474383
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp. 55 (1990), 55-87
- MSC: Primary 65M12
- DOI: https://doi.org/10.1090/S0025-5718-1990-1023047-5
- MathSciNet review: 1023047