## On computations with dense structured matrices

HTML articles powered by AMS MathViewer

- by Victor Pan PDF
- Math. Comp.
**55**(1990), 179-190 Request permission

## Abstract:

We reduce several computations with Hilbert and Vandermonde type matrices to matrix computations of the Hankel-Toeplitz type (and vice versa). This unifies various known algorithms for computations with dense structured matrices and enables us to extend any progress in computations with matrices of one class to the computations with other classes of matrices. In particular, this enables us to compute the inverses and the determinants of $n \times n$ matrices of Vandermonde and Hilbert types for the cost of $O(n{\log ^2}n)$ arithmetic operations. (Previously, such results were only known for the more narrow class of Vandermonde and generalized Hilbert matrices.)## References

- Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman,
*The design and analysis of computer algorithms*, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Second printing. MR**0413592** - Gregory S. Ammar and William B. Gragg,
*Superfast solution of real positive definite Toeplitz systems*, SIAM J. Matrix Anal. Appl.**9**(1988), no.Â 1, 61â€“76. SIAM Conference on Linear Algebra in Signals, Systems, and Control (Boston, Mass., 1986). MR**938136**, DOI 10.1137/0609005 - Christopher R. Anderson,
*A method of local corrections for computing the velocity field due to a distribution of vortex blobs*, J. Comput. Phys.**62**(1986), no.Â 1, 111â€“123. MR**825893**, DOI 10.1016/0021-9991(86)90102-6 - Andrew W. Appel,
*An efficient program for many-body simulation*, SIAM J. Sci. Statist. Comput.**6**(1985), no.Â 1, 85â€“103. MR**773283**, DOI 10.1137/0906008
J. Barnes and P. Hut, - Robert R. Bitmead and Brian D. O. Anderson,
*Asymptotically fast solution of Toeplitz and related systems of linear equations*, Linear Algebra Appl.**34**(1980), 103â€“116. MR**591427**, DOI 10.1016/0024-3795(80)90161-5 - Allan Borodin and Ian Munro,
*The computational complexity of algebraic and numeric problems*, Elsevier Computer Science Library: Theory of Computation Series, No. 1, American Elsevier Publishing Co., Inc., New York-London-Amsterdam, 1975. MR**0468309**
J. F. Canny, E. Kaltofen, and Y. Lakshman, - J. Chun and T. Kailath,
*Divide-and-conquer solutions of least-squares problems for matrices with displacement structure*, SIAM J. Matrix Anal. Appl.**12**(1991), no.Â 1, 128â€“145. MR**1082331**, DOI 10.1137/0612010 - J. Chun, T. Kailath, and H. Lev-Ari,
*Fast parallel algorithms for $QR$ and triangular factorization*, SIAM J. Sci. Statist. Comput.**8**(1987), no.Â 6, 899â€“913. MR**911062**, DOI 10.1137/0908073 - N. Gastinel,
*Inversion dâ€™une matrice gĂ©nĂ©ralisant la matrice de Hilbert*, Chiffres**3**(1960), 149â€“152 (French, with English, German and Russian summaries). MR**123585** - A. Gerasoulis,
*A fast algorithm for the multiplication of generalized Hilbert matrices with vectors*, Math. Comp.**50**(1988), no.Â 181, 179â€“188. MR**917825**, DOI 10.1090/S0025-5718-1988-0917825-9 - I. Gohberg, T. Kailath, and I. Koltracht,
*Efficient solution of linear systems of equations with recursive structure*, Linear Algebra Appl.**80**(1986), 81â€“113. MR**851934**, DOI 10.1016/0024-3795(86)90279-X - I. Gohberg, T. Kailath, I. Koltracht, and P. Lancaster,
*Linear complexity parallel algorithms for linear systems of equations with recursive structure*, Linear Algebra Appl.**88/89**(1987), 271â€“315. MR**882451**, DOI 10.1016/0024-3795(87)90113-3
G. Heining and K. Rost, - T. Kailath and J. Chun,
*Generalized Gohberg-Semencul formulas for matrix inversion*, The Gohberg anniversary collection, Vol. I (Calgary, AB, 1988) Oper. Theory Adv. Appl., vol. 40, BirkhĂ¤user, Basel, 1989, pp.Â 231â€“246. MR**1038316** - Thomas Kailath, Sun Yuan Kung, and Martin Morf,
*Displacement ranks of matrices and linear equations*, J. Math. Anal. Appl.**68**(1979), no.Â 2, 395â€“407. MR**533501**, DOI 10.1016/0022-247X(79)90124-0 - T. Kailath, A. Vieira, and M. Morf,
*Inverses of Toeplitz operators, innovations, and orthogonal polynomials*, SIAM Rev.**20**(1978), no.Â 1, 106â€“119. MR**512865**, DOI 10.1137/1020006 - A. Leonard,
*Vortex methods for flow simulation*, J. Comput. Phys.**37**(1980), no.Â 3, 289â€“335. MR**588256**, DOI 10.1016/0021-9991(80)90040-6
B. R. Musicus, - A. M. Odlyzko and A. SchĂ¶nhage,
*Fast algorithms for multiple evaluations of the Riemann zeta function*, Trans. Amer. Math. Soc.**309**(1988), no.Â 2, 797â€“809. MR**961614**, DOI 10.1090/S0002-9947-1988-0961614-2
V. Pan, - Victor Pan,
*Fast and efficient parallel inversion of Toeplitz and block Toeplitz matrices*, The Gohberg anniversary collection, Vol. I (Calgary, AB, 1988) Oper. Theory Adv. Appl., vol. 40, BirkhĂ¤user, Basel, 1989, pp.Â 359â€“389. MR**1038320**
â€”, - V. Rokhlin,
*Rapid solution of integral equations of classical potential theory*, J. Comput. Phys.**60**(1985), no.Â 2, 187â€“207. MR**805870**, DOI 10.1016/0021-9991(85)90002-6 - V. Rokhlin,
*A fast algorithm for the discrete Laplace transformation*, J. Complexity**4**(1988), no.Â 1, 12â€“32. MR**939693**, DOI 10.1016/0885-064X(88)90007-6
M. Tismenetsky,

*A hierarchical*$O(N\log N)$

*force-calculation algorithm*, Nature

**324**(1986), 446-449.

*Solving systems of non-linear polynomial equations faster*, Proc. ACM-SIGSAM Internat. Symposium on Symbolic and Algebraic Computations, ACM, New York, 1989, pp. 34-42.

*Algebraic methods for Toeplitz-like matrices and operators*, Operator Theory, vol. 13, BirkhĂ¤user, 1984.

*Levinson and fast Choleski algorithms for Toeplitz and almost Toeplitz matrices*, Internal Report, Lab. of Electonics, M.I.T., 1981. S. T. Oâ€™Donnell and V. Rokhlin,

*A fast algorithm for numerical evaluation of conformal mappings*, Research Report RR-554, Yale Univ., Dept of Computer Science, 1987.

*New effective methods for computations with structured matrices*, Technical Report 88-28, Computer Science Dept., SUNY Albany, 1988.

*Parallel least-squares solution of general and Toeplitz-like linear systems*, manuscript, 1990.

*BĂ©soutians, Toeplitz and Hankel matrices in the spectral theory of matrix polynomials*, Ph.D. thesis, Technion, Haifa, 1981.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Math. Comp.
**55**(1990), 179-190 - MSC: Primary 65F30
- DOI: https://doi.org/10.1090/S0025-5718-1990-1023051-7
- MathSciNet review: 1023051