Families of modular eigenforms
HTML articles powered by AMS MathViewer
- by F. Gouvêa and B. Mazur PDF
- Math. Comp. 58 (1992), 793-805 Request permission
Abstract:
This article is an expansion of the notes to a one-hour lecture for an MSRI workshop on computational number theory. The editors of Mathematics of Computation kindly asked us to submit these notes for publication, and we are enormously pleased to do so. Our original audience did not consist of experts in the field of modular forms, and we have tried to keep this article accessible to nonexperts.References
- A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134–160. MR 268123, DOI 10.1007/BF01359701
- Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids $1$, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530 (1975) (French). MR 379379
- Fernando Q. Gouvêa, Arithmetic of $p$-adic modular forms, Lecture Notes in Mathematics, vol. 1304, Springer-Verlag, Berlin, 1988. MR 1027593, DOI 10.1007/BFb0082111 F. Gouvêa and B. Mazur, Families of p-adic eigenforms (in preparation).
- Haruzo Hida, Galois representations into $\textrm {GL}_2(\textbf {Z}_p[[X]])$ attached to ordinary cusp forms, Invent. Math. 85 (1986), no. 3, 545–613. MR 848685, DOI 10.1007/BF01390329
- Naomi Jochnowitz, A study of the local components of the Hecke algebra mod $l$, Trans. Amer. Math. Soc. 270 (1982), no. 1, 253–267. MR 642340, DOI 10.1090/S0002-9947-1982-0642340-0
- Nicholas M. Katz, $p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 69–190. MR 0447119
- Jean-Pierre Serre, Formes modulaires et fonctions zêta $p$-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 191–268 (French). MR 0404145
- A. Wiles, On ordinary $\lambda$-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529–573. MR 969243, DOI 10.1007/BF01394275
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp. 58 (1992), 793-805
- MSC: Primary 11F33; Secondary 11Y35, 14G20
- DOI: https://doi.org/10.1090/S0025-5718-1992-1122070-1
- MathSciNet review: 1122070