A posteriori error bounds for piecewise linear approximate solutions of elliptic equations of monotone type
HTML articles powered by AMS MathViewer
- by Koichi Niijima PDF
- Math. Comp. 58 (1992), 549-560 Request permission
Abstract:
We present a method for computing a posteriori error bounds for piecewise linear approximate solutions of elliptic equations of monotone type. The method is based on a relation between a line integral on an edge of a triangle and volume integrals in the triangle.References
-
I. Babuška and W. C. Rheinboldt, A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12 (1978), 1597-1615.
- I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR 483395, DOI 10.1137/0715049
- I. Babuška and W. C. Rheinboldt, Analysis of optimal finite-element meshes in $\textbf {R}^{1}$, Math. Comp. 33 (1979), no. 146, 435–463. MR 521270, DOI 10.1090/S0025-5718-1979-0521270-2
- R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283–301. MR 777265, DOI 10.1090/S0025-5718-1985-0777265-X S. Fučík and A. Kufner, Nonlinear differential equations, Elsevier, Amsterdam, 1980.
- Karel Rektorys, Variational methods in mathematics, science and engineering, 2nd ed., D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1980. Translated from the Czech by Michael Basch. MR 596582
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp. 58 (1992), 549-560
- MSC: Primary 65N30; Secondary 65N15
- DOI: https://doi.org/10.1090/S0025-5718-1992-1122073-7
- MathSciNet review: 1122073