## A table of elliptic integrals: two quadratic factors

HTML articles powered by AMS MathViewer

- by B. C. Carlson PDF
- Math. Comp.
**59**(1992), 165-180 Request permission

## Abstract:

Thirteen integrands that are rational except for the square root of a quartic polynomial with two pairs of conjugate complex zeros are integrated in terms of*R*-functions of real variables. In contrast with previous tables, the formulas hold for all real intervals of integration for which the integrals exist (possibly as Cauchy principal values). This is achieved by using Landen’s transformation and the duplication theorem. In an appendix, an elliptic integral of the third kind with a restricted complex parameter is transformed to make the parameter real. Also, a degenerate integral of the first kind is separated into real and imaginary parts.

## References

- Paul F. Byrd and Morris D. Friedman,
*Handbook of elliptic integrals for engineers and scientists*, Die Grundlehren der mathematischen Wissenschaften, Band 67, Springer-Verlag, New York-Heidelberg, 1971. Second edition, revised. MR**0277773** - Billie Chandler Carlson,
*Special functions of applied mathematics*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. MR**0590943** - B. C. Carlson,
*Elliptic integrals of the first kind*, SIAM J. Math. Anal.**8**(1977), no. 2, 231–242. MR**430341**, DOI 10.1137/0508016 - B. C. Carlson,
*A table of elliptic integrals of the second kind*, Math. Comp.**49**(1987), no. 180, 595–606, S13–S17. MR**906192**, DOI 10.1090/S0025-5718-1987-0906192-1 - B. C. Carlson,
*A table of elliptic integrals of the third kind*, Math. Comp.**51**(1988), no. 183, 267–280, S1–S5. MR**942154**, DOI 10.1090/S0025-5718-1988-0942154-7 - B. C. Carlson,
*A table of elliptic integrals: cubic cases*, Math. Comp.**53**(1989), no. 187, 327–333. MR**969482**, DOI 10.1090/S0025-5718-1989-0969482-4 - B. C. Carlson,
*Landen transformations of integrals*, Asymptotic and computational analysis (Winnipeg, MB, 1989) Lecture Notes in Pure and Appl. Math., vol. 124, Dekker, New York, 1990, pp. 75–94. MR**1052430** - B. C. Carlson,
*A table of elliptic integrals: one quadratic factor*, Math. Comp.**56**(1991), no. 193, 267–280. MR**1052087**, DOI 10.1090/S0025-5718-1991-1052087-6
I. S. Gradshteyn and I. M. Ryzhik,

*Table of integrals, series, and products*, Academic Press, New York, 1980.

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp.
**59**(1992), 165-180 - MSC: Primary 65D20; Secondary 33C75, 33E05
- DOI: https://doi.org/10.1090/S0025-5718-1992-1134720-4
- MathSciNet review: 1134720