Some singular moduli for $\textbf {Q}(\sqrt 3)$
HTML articles powered by AMS MathViewer
- by Harvey Cohn and Jesse Deutsch PDF
- Math. Comp. 59 (1992), 231-247 Request permission
Abstract:
In an earlier paper in this journal, the authors derived the equations which transform the Hilbert modular function field for ${\mathbf {Q}}(\sqrt 3 )$ when the arguments are multiplied by $(1 + \sqrt 3 ,1 - \sqrt 3 )$. These equations define a complex ${V_2}$, but we concentrate on special diagonal curves on which the values of some of the singular moduli can be evaluated numerically by using the "PSOS" algorithm. In this way the ring class fields can be evaluated for the forms ${\xi ^2} + {2^t}A{\eta ^2}$, where $A = 1,2,3,6$ and $t > 0$. These last results are based partly on conjectures supported here by numerical evidence.References
- David H. Bailey and Helaman R. P. Ferguson, Numerical results on relations between fundamental constants using a new algorithm, Math. Comp. 53 (1989), no. 188, 649–656. MR 979934, DOI 10.1090/S0025-5718-1989-0979934-9
- Walter L. Baily Jr., On the theory of Hilbert modular functions. I. Arithmetic groups and Eisenstein series, J. Algebra 90 (1984), no. 2, 567–605. MR 760029, DOI 10.1016/0021-8693(84)90190-X
- Harvey Cohn, Some special complex multiplications in two variables using Hilbert singular moduli, Number theory (New York, 1989/1990) Springer, New York, 1991, pp. 75–83. MR 1124635
- Harvey Cohn, An explicit modular equation in two variables and Hilbert’s twelfth problem, Math. Comp. 38 (1982), no. 157, 227–236. MR 637301, DOI 10.1090/S0025-5718-1982-0637301-5
- Harvey Cohn, Some examples of Weber-Hecke ring class field theory, Math. Ann. 265 (1983), no. 1, 83–100. MR 719352, DOI 10.1007/BF01456937
- Harvey Cohn and Jesse Deutsch, An explicit modular equation in two variables for $\textbf {Q}(\sqrt 3)$, Math. Comp. 50 (1988), no. 182, 557–568. MR 929553, DOI 10.1090/S0025-5718-1988-0929553-4
- Koji Doi and Hidehisa Naganuma, On the functional equation of certain Dirichlet series, Invent. Math. 9 (1969/70), 1–14. MR 253990, DOI 10.1007/BF01389886
- Karl-Bernhard Gundlach, Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen, J. Reine Angew. Math. 220 (1965), 109–153 (German). MR 193069, DOI 10.1515/crll.1965.220.109
- E. Hecke, Höhere Modulfunktionen und ihre Anwendung auf die Zahlentheorie, Math. Ann. 71 (1911), no. 1, 1–37 (German). MR 1511639, DOI 10.1007/BF01456926
- F. Hirzebruch, Kurven auf den Hilbertschen Modulflächen und Klassenzahlrelationen, Classification of algebraic varieties and compact complex manifolds, Lecture Notes in Math., Vol. 412, Springer, Berlin, 1974, pp. 75–93 (German). MR 0376694
- E. Hecke, Über die Konstruktion relativ-Abelscher Zahlkörper durch Modulfunktionen von zwei Variabeln, Math. Ann. 74 (1913), no. 4, 465–510 (German). MR 1511778, DOI 10.1007/BF01456909
- Martin L. Karel, Special values of Hilbert modular functions, Rev. Mat. Iberoamericana 2 (1986), no. 4, 367–380. MR 913693, DOI 10.4171/RMI/39
- Sh\B{o}yū Nagaoka, On Hilbert modular forms. III, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 7, 346–348. MR 726199
- Goro Shimura and Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, vol. 6, Mathematical Society of Japan, Tokyo, 1961. MR 0125113
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Math. Comp. 59 (1992), 231-247
- MSC: Primary 11R37; Secondary 11F41
- DOI: https://doi.org/10.1090/S0025-5718-1992-1134721-6
- MathSciNet review: 1134721