Some singular moduli for $\textbf {Q}(\sqrt 3)$
Authors:
Harvey Cohn and Jesse Deutsch
Journal:
Math. Comp. 59 (1992), 231-247
MSC:
Primary 11R37; Secondary 11F41
DOI:
https://doi.org/10.1090/S0025-5718-1992-1134721-6
MathSciNet review:
1134721
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In an earlier paper in this journal, the authors derived the equations which transform the Hilbert modular function field for ${\mathbf {Q}}(\sqrt 3 )$ when the arguments are multiplied by $(1 + \sqrt 3 ,1 - \sqrt 3 )$. These equations define a complex ${V_2}$, but we concentrate on special diagonal curves on which the values of some of the singular moduli can be evaluated numerically by using the "PSOS" algorithm. In this way the ring class fields can be evaluated for the forms ${\xi ^2} + {2^t}A{\eta ^2}$, where $A = 1,2,3,6$ and $t > 0$. These last results are based partly on conjectures supported here by numerical evidence.
- David H. Bailey and Helaman R. P. Ferguson, Numerical results on relations between fundamental constants using a new algorithm, Math. Comp. 53 (1989), no. 188, 649–656. MR 979934, DOI https://doi.org/10.1090/S0025-5718-1989-0979934-9
- Walter L. Baily Jr., On the theory of Hilbert modular functions. I. Arithmetic groups and Eisenstein series, J. Algebra 90 (1984), no. 2, 567–605. MR 760029, DOI https://doi.org/10.1016/0021-8693%2884%2990190-X
- Harvey Cohn, Some special complex multiplications in two variables using Hilbert singular moduli, Number theory (New York, 1989/1990) Springer, New York, 1991, pp. 75–83. MR 1124635
- Harvey Cohn, An explicit modular equation in two variables and Hilbert’s twelfth problem, Math. Comp. 38 (1982), no. 157, 227–236. MR 637301, DOI https://doi.org/10.1090/S0025-5718-1982-0637301-5
- Harvey Cohn, Some examples of Weber-Hecke ring class field theory, Math. Ann. 265 (1983), no. 1, 83–100. MR 719352, DOI https://doi.org/10.1007/BF01456937
- Harvey Cohn and Jesse Deutsch, An explicit modular equation in two variables for ${\bf Q}(\sqrt 3)$, Math. Comp. 50 (1988), no. 182, 557–568. MR 929553, DOI https://doi.org/10.1090/S0025-5718-1988-0929553-4
- Koji Doi and Hidehisa Naganuma, On the functional equation of certain Dirichlet series, Invent. Math. 9 (1969/70), 1–14. MR 253990, DOI https://doi.org/10.1007/BF01389886
- Karl-Bernhard Gundlach, Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen, J. Reine Angew. Math. 220 (1965), 109–153 (German). MR 193069, DOI https://doi.org/10.1515/crll.1965.220.109
- E. Hecke, Höhere Modulfunktionen und ihre Anwendung auf die Zahlentheorie, Math. Ann. 71 (1911), no. 1, 1–37 (German). MR 1511639, DOI https://doi.org/10.1007/BF01456926
- F. Hirzebruch, Kurven auf den Hilbertschen Modulflächen und Klassenzahlrelationen, Classification of algebraic varieties and compact complex manifolds, Springer, Berlin, 1974, pp. 75–93. Lecture Notes in Math., Vol. 412 (German). MR 0376694
- E. Hecke, Über die Konstruktion relativ-Abelscher Zahlkörper durch Modulfunktionen von zwei Variabeln, Math. Ann. 74 (1913), no. 4, 465–510 (German). MR 1511778, DOI https://doi.org/10.1007/BF01456909
- Martin L. Karel, Special values of Hilbert modular functions, Rev. Mat. Iberoamericana 2 (1986), no. 4, 367–380. MR 913693, DOI https://doi.org/10.4171/RMI/39
- Sh\B{o}yū Nagaoka, On Hilbert modular forms. III, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 7, 346–348. MR 726199
- Goro Shimura and Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, vol. 6, The Mathematical Society of Japan, Tokyo, 1961. MR 0125113
Retrieve articles in Mathematics of Computation with MSC: 11R37, 11F41
Retrieve articles in all journals with MSC: 11R37, 11F41
Additional Information
Keywords:
Hilbert modular functions,
modular equations,
singular moduli,
class field theory
Article copyright:
© Copyright 1992
American Mathematical Society