A table of quintic number fields
Authors:
A. Schwarz, M. Pohst and F. Diaz y Diaz
Journal:
Math. Comp. 63 (1994), 361-376
MSC:
Primary 11Y40; Secondary 11R21, 11R32
DOI:
https://doi.org/10.1090/S0025-5718-1994-1219705-3
MathSciNet review:
1219705
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: All algebraic number fields F of degree 5 and absolute discriminant less than $2 \times {10^7}$ (totally real fields), respectively $5 \times {10^6}$ (other signatures) are determined. We describe the methods which we applied and list significant data.
- Erwin H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination, Math. Comp. 22 (1968), 565–578. MR 226829, DOI https://doi.org/10.1090/S0025-5718-1968-0226829-0
- Johannes Buchmann and David Ford, On the computation of totally real quartic fields of small discriminant, Math. Comp. 52 (1989), no. 185, 161–174. MR 946599, DOI https://doi.org/10.1090/S0025-5718-1989-0946599-1
- Johannes Buchmann, David Ford, and Michael Pohst, Enumeration of quartic fields of small discriminant, Math. Comp. 61 (1993), no. 204, 873–879. MR 1176706, DOI https://doi.org/10.1090/S0025-5718-1993-1176706-0
- F. Diaz y Diaz, A table of totally real quintic number fields, Math. Comp. 56 (1991), no. 194, 801–808, S1–S12. MR 1068820, DOI https://doi.org/10.1090/S0025-5718-1991-1068820-3
- D. Ford, Enumeration of totally complex quartic fields of small discriminant, Computational number theory (Debrecen, 1989) de Gruyter, Berlin, 1991, pp. 129–138. MR 1151860
- John Hunter, The minimum discriminants of quintic fields, Proc. Glasgow Math. Assoc. 3 (1957), 57–67. MR 91309
- Nikola Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963 (German). MR 0164003
- Michael Pohst, Berechnung kleiner Diskriminanten total reeller algebraischer Zahlkörper, J. Reine Angew. Math. 278(279) (1975), 278–300 (German). MR 387242, DOI https://doi.org/10.1515/crll.1975.278-279.278
- Michael Pohst, On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields, J. Number Theory 14 (1982), no. 1, 99–117. MR 644904, DOI https://doi.org/10.1016/0022-314X%2882%2990061-0
- M. Pohst, On computing isomorphisms of equation orders, Math. Comp. 48 (1987), no. 177, 309–314. MR 866116, DOI https://doi.org/10.1090/S0025-5718-1987-0866116-2
- M. Pohst, J. Martinet, and F. Diaz y Diaz, The minimum discriminant of totally real octic fields, J. Number Theory 36 (1990), no. 2, 145–159. MR 1072461, DOI https://doi.org/10.1016/0022-314X%2890%2990069-4
- M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. MR 1033013 A. Schwarz, Berechnung von Zahlkörpen fünften Grades mit kleiner Diskriminante, Diplomarbeit, Heinrich-Heine-Universität Düsseldorf, 1991.
- J. Graf von Schmettow, KANT—a tool for computations in algebraic number fields, Computational number theory (Debrecen, 1989) de Gruyter, Berlin, 1991, pp. 321–330. MR 1151875
- Carl Ludwig Siegel, The trace of totally positive and real algebraic integers, Ann. of Math. (2) 46 (1945), 302–312. MR 12092, DOI https://doi.org/10.2307/1969025
- Richard P. Stauduhar, The determination of Galois groups, Math. Comp. 27 (1973), 981–996. MR 327712, DOI https://doi.org/10.1090/S0025-5718-1973-0327712-4 B. L. van der Waerden, Algebra. I, 8th ed., Heidelberger Taschenbücher 12, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
- Hans Zassenhaus, On the second round of the maximal order program, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 389–431. MR 0371862
Retrieve articles in Mathematics of Computation with MSC: 11Y40, 11R21, 11R32
Retrieve articles in all journals with MSC: 11Y40, 11R21, 11R32
Additional Information
Article copyright:
© Copyright 1994
American Mathematical Society