## Half-step modular equations

HTML articles powered by AMS MathViewer

- by Harvey Cohn PDF
- Math. Comp.
**64**(1995), 1267-1285 Request permission

## Abstract:

The classical modular equations relating Klein-Weber’s $j(\tau )$ to $j(b\tau )$ can be computed as the composition of two "half-step" equations relating ${j_m}(\tau )$ and ${j_m}(\tau \sqrt b )$, where ${j_m}$ is an extended modular function (corresponding to $\tau \to \tau + \sqrt m ,\tau \to - 1/\tau$, et al.). The half-step equations are easily constructed and manipulated in computer algebra. The cases computed here are*b*prime, $m = a$ (or

*ab*), $\gcd (a,b) = 1,ab|30$. This includes many cases where the property of "normal parametrization" occurs, which is of interest in class field theory. Extended modular functions have found recent application in group character theory but they arose in the present context as traces at $\infty$ of Hilbert modular equations.

## References

- A. O. L. Atkin and J. Lehner,
*Hecke operators on $\Gamma _{0}(m)$*, Math. Ann.**185**(1970), 134–160. MR**268123**, DOI 10.1007/BF01359701 - Harvey Cohn,
*Iterated ring class fields and the icosahedron*, Math. Ann.**255**(1981), no. 1, 107–122. MR**611277**, DOI 10.1007/BF01450560 - Harvey Cohn,
*An explicit modular equation in two variables and Hilbert’s twelfth problem*, Math. Comp.**38**(1982), no. 157, 227–236. MR**637301**, DOI 10.1090/S0025-5718-1982-0637301-5 - Harvey Cohn,
*Some examples of Weber-Hecke ring class field theory*, Math. Ann.**265**(1983), no. 1, 83–100. MR**719352**, DOI 10.1007/BF01456937 - Harvey Cohn,
*Introduction to the construction of class fields*, Cambridge Studies in Advanced Mathematics, vol. 6, Cambridge University Press, Cambridge, 1985. MR**812270**
—, - Harvey Cohn and Jesse Deutsch,
*Some singular moduli for $\textbf {Q}(\sqrt 3)$*, Math. Comp.**59**(1992), no. 199, 231–247. MR**1134721**, DOI 10.1090/S0025-5718-1992-1134721-6 - Harvey Cohn,
*How branching properties determine modular equations*, Math. Comp.**61**(1993), no. 203, 155–170. MR**1195433**, DOI 10.1090/S0025-5718-1993-1195433-7 - Harvey Cohn and Marvin I. Knopp,
*Application of Dedekind eta-multipliers to modular equations*, The Rademacher legacy to mathematics (University Park, PA, 1992) Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 9–34. MR**1284049**, DOI 10.1090/conm/166/01627
R. Fricke, - Robert Fricke,
*Über die Berechnung der Klasseninvarianten*, Acta Math.**52**(1929), no. 1, 257–279 (German). Zur Säkularfeier von Abels Entdeckung der komplexen Multiplikation. MR**1555277**, DOI 10.1007/BF02547408 - John McKay and Hubertus Strauss,
*The $q$-series of monstrous moonshine and the decomposition of the head characters*, Comm. Algebra**18**(1990), no. 1, 253–278. MR**1037906**, DOI 10.1080/00927879008823911

*A numerical survey of the reduction of modular curve genus by Fricke’s involutions*, Number Theory (New York Seminar (1989-1990)), Springer-Verlag, New York, 1991, pp. 85-104.

*Lehrbuch der Algebra*III (

*Algebraische Zahlen*), Vieweg, Braunschweig, 1928.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp.
**64**(1995), 1267-1285 - MSC: Primary 11F03; Secondary 11F11
- DOI: https://doi.org/10.1090/S0025-5718-1995-1284665-7
- MathSciNet review: 1284665