Multiamicable numbers
HTML articles powered by AMS MathViewer
- by Graeme L. Cohen, Stephen F. Gretton and Peter Hagis PDF
- Math. Comp. 64 (1995), 1743-1753 Request permission
Abstract:
Multiamicable numbers are a natural generalization of amicable numbers: two numbers form a multiamicable pair if the sum of the proper divisors of each is a multiple of the other. Many other generalizations have been considered in the past. This paper reviews those earlier generalizations and gives examples and properties of multiamicable pairs. It includes a proof that the set of all multiamicable numbers has density 0.References
- S. Battiato and W. Borho, Are there odd amicable numbers not divisible by three?, Math. Comp. 50 (1988), no. 182, 633–637. MR 929559, DOI 10.1090/S0025-5718-1988-0929559-5
- R. D. Carmichael, Recent Publications: Reviews: History of the Theory of Numbers. Volume I: Divisibility and Primality, Amer. Math. Monthly 26 (1919), no. 9, 396–403. MR 1519382, DOI 10.2307/2971917
- Graeme L. Cohen, On an integer’s infinitary divisors, Math. Comp. 54 (1990), no. 189, 395–411. MR 993927, DOI 10.1090/S0025-5718-1990-0993927-5 —, Generalisations of amicable numbers, Internal Report No. 36, School of Mathematical Sciences, University of Technology, Sydney, April 1992.
- Henri Cohen, On amicable and sociable numbers, Math. Comp. 24 (1970), 423–429. MR 271004, DOI 10.1090/S0025-5718-1970-0271004-6
- L. E. Dickson, Amicable Number Triples, Amer. Math. Monthly 20 (1913), no. 3, 84–92. MR 1517797, DOI 10.2307/2973442 Leonard Eugene Dickson, History of the theory of numbers, Vol. 1, Chelsea, New York, 1971.
- P. Erdös, On amicable numbers, Publ. Math. Debrecen 4 (1955), 108–111. MR 69198
- Achim Flammenkamp, New sociable numbers, Math. Comp. 56 (1991), no. 194, 871–873. MR 1052094, DOI 10.1090/S0025-5718-1991-1052094-3
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- Peter Hagis Jr., Unitary amicable numbers, Math. Comp. 25 (1971), 915–918. MR 299551, DOI 10.1090/S0025-5718-1971-0299551-2
- C. Krishnamurthy, Some sets of amicable numbers of higher order, Indian J. Pure Appl. Math. 11 (1980), no. 12, 1549–1553. MR 617829
- A. Mąkowski, On some equations involving functions $\phi (n)$ and $\sigma (n)$, Amer. Math. Monthly 67 (1960), 668–670. MR 130209, DOI 10.2307/2310107
- Thomas E. Mason, On Amicable Numbers and Their Generalizations, Amer. Math. Monthly 28 (1921), no. 5, 195–200. MR 1519771, DOI 10.2307/2973750
- Wayne McDaniel, On odd multiply perfect numbers, Boll. Un. Mat. Ital. (4) 3 (1970), 185–190. MR 0262154
- David Moews and Paul C. Moews, A search for aliquot cycles below $10^{10}$, Math. Comp. 57 (1991), no. 196, 849–855. MR 1094955, DOI 10.1090/S0025-5718-1991-1094955-5 Paul Poulet, La chasse aux nombres, Bruxelles, 1929.
- Herman J. J. te Riele, On generating new amicable pairs from given amicable pairs, Math. Comp. 42 (1984), no. 165, 219–223. MR 725997, DOI 10.1090/S0025-5718-1984-0725997-0 W. Sierpiñski, Elementary theory of numbers, North-Holland, Amsterdam, 1988.
- Benjamin Franklin Yanney, Another Definition of Amicable Numbers and Some of their Relations to Dickson’s Amicables, Amer. Math. Monthly 30 (1923), no. 6, 311–315. MR 1520272, DOI 10.2307/2300268
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp. 64 (1995), 1743-1753
- MSC: Primary 11A25
- DOI: https://doi.org/10.1090/S0025-5718-1995-1308449-6
- MathSciNet review: 1308449