A finite element model for the time-dependent Joule heating problem
HTML articles powered by AMS MathViewer
- by Charles M. Elliott and Stig Larsson PDF
- Math. Comp. 64 (1995), 1433-1453 Request permission
Abstract:
We study a spatially semidiscrete and a completely discrete finite element model for a nonlinear system consisting of an elliptic and a parabolic partial differential equation describing the electric heating of a conducting body. We prove error bounds of optimal order under minimal regularity assumptions when the number of spatial variables $d \leq 3$. We establish the existence of solutions with the required regularity over arbitrarily long intervals of time when $d \leq 2$.References
- R. A. Adams and John Fournier, Cone conditions and properties of Sobolev spaces, J. Math. Anal. Appl. 61 (1977), no. 3, 713–734. MR 463902, DOI 10.1016/0022-247X(77)90173-1
- W. Allegretto and H. Xie, Existence of solutions for the time-dependent thermistor equations, IMA J. Appl. Math. 48 (1992), no. 3, 271–281. MR 1167737, DOI 10.1093/imamat/48.3.271
- Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- Giovanni Cimatti, Existence of weak solutions for the nonstationary problem of the joule heating of a conductor, Ann. Mat. Pura Appl. (4) 162 (1992), 33–42. MR 1199645, DOI 10.1007/BF01759998
- Jim Douglas Jr., Richard E. Ewing, and Mary Fanett Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numér. 17 (1983), no. 1, 17–33 (English, with French summary). MR 695450
- Jim Douglas Jr., Richard E. Ewing, and Mary Fanett Wheeler, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO Anal. Numér. 17 (1983), no. 3, 249–265 (English, with French summary). MR 702137
- Pierre Grisvard, Le problème de Dirichlet dans l’espace $W^1_p$, Portugal. Math. 43 (1985/86), no. 4, 393–398 (1987) (French, with English summary). MR 911445 —, Elliptic problems in nonsmooth domains, Pitman, New York, 1985.
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- Claes Johnson, Stig Larsson, Vidar Thomée, and Lars B. Wahlbin, Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), no. 180, 331–357. MR 906175, DOI 10.1090/S0025-5718-1987-0906175-1
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes. II, Ann. Inst. Fourier (Grenoble) 11 (1961), 137–178 (French). MR 146525
- Norman G. Meyers, An $L^{p}$e-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 189–206. MR 159110
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- José-Francisco Rodrigues, A nonlinear parabolic system arising in thermomechanics and in thermomagnetism, Math. Models Methods Appl. Sci. 2 (1992), no. 3, 271–281. MR 1181337, DOI 10.1142/S021820259200017X
- Patricia Saavedra and L. Ridgway Scott, Variational formulation of a model free-boundary problem, Math. Comp. 57 (1991), no. 196, 451–475. MR 1094958, DOI 10.1090/S0025-5718-1991-1094958-0 V. Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Math., vol. 1054, Springer-Verlag, Berlin and New York, 1984.
- Xing Ye Yue, Numerical analysis of nonstationary thermistor problem, J. Comput. Math. 12 (1994), no. 3, 213–223. MR 1290247
Additional Information
- © Copyright 1995 American Mathematical Society
- Journal: Math. Comp. 64 (1995), 1433-1453
- MSC: Primary 65M60; Secondary 35Q99, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1995-1308451-4
- MathSciNet review: 1308451