The number of polyhedral (3-connected planar) graphs

Author:
A. J. W. Duijvestijn

Journal:
Math. Comp. **65** (1996), 1289-1293

MSC (1991):
Primary 05C30; Secondary 52B05

DOI:
https://doi.org/10.1090/S0025-5718-96-00749-1

MathSciNet review:
1348044

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Data is presented on the number of 3-connected planar graphs, isomorphic to the graphs of convex polyhedra, with up to 26 edges. Results have been checked with the the number of rooted c-nets of R.C. Mullin and P.J. Schellenberg and Liu Yanpei.

- R.L. Brooks, C.A.B. Smith, A.H. Stone, and W.T. Tutte,
*The dissection of rectangles into squares*, Duke Mathematical Journal**7**(1940), 312–340. - A.J.W. Duijvestijn,
*Simple perfect squared squares and $2\times 1$ squared rectangles of order 26*, Mathematics of Computation,**65**(1996)to appear. - Adrianus Johannes Wilhelmus Duijvestijn,
*Electronic computation of squared rectangles*, Thesis, Technische Wetenschap aan de Technische Hogeschool te Eindhoven, Eindhoven, 1962. MR**0144492** - ---,
*Electronic computation of squared rectangles*, Philips Research Reports**17**(1962), 523–612. - ---,
*Algorithmic calculation of the order of the automorphism group of a graph*, Memorandum 221, Twente University of Technology, The Netherlands, 1978. - A. J. W. Duijvestijn,
*Simple perfect squared squares and $2\times 1$ squared rectangles of orders $21$ and $24$*, J. Combin. Theory Ser. B**59**(1993), no. 1, 26–34. MR**1234380**, DOI https://doi.org/10.1006/jctb.1993.1051 - A. J. W. Duijvestijn,
*Simple perfect squared squares and $2\times 1$ squared rectangles of order $25$*, Math. Comp.**62**(1994), no. 205, 325–332. MR**1208220**, DOI https://doi.org/10.1090/S0025-5718-1994-1208220-9 - A.J.W. Duijvestijn and P.J. Federico,
*The number of polyhedral (3-connected planar ) graphs*, Mathematics of Computation**37**(1981), 523–532. - Yan Pei Liu,
*On the number of rooted $c$-nets*, J. Combin. Theory Ser. B**36**(1984), no. 1, 118–123. MR**742391**, DOI https://doi.org/10.1016/0095-8956%2884%2990018-2 - Dillencourt M.B., 1991, private communication.
- R. C. Mullin and P. J. Schellenberg,
*The enumeration of $c$-nets via quadrangulations*, J. Combinatorial Theory**4**(1968), 259–276. MR**218275** - W. T. Tutte,
*A theory of $3$-connected graphs*, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math.**23**(1961), 441–455. MR**0140094** - W. T. Tutte,
*A census of planar maps*, Canadian J. Math.**15**(1963), 249–271. MR**146823**, DOI https://doi.org/10.4153/CJM-1963-029-x

Retrieve articles in *Mathematics of Computation*
with MSC (1991):
05C30,
52B05

Retrieve articles in all journals with MSC (1991): 05C30, 52B05

Additional Information

**A. J. W. Duijvestijn**

Affiliation:
Department of Informatics, Technological University Twente, Enschede, The Netherlands

Email:
infdvstn@cs.utwente.nl

Keywords:
Graph theory,
3-connected graphs,
polyhedral graphs

Received by editor(s):
February 16, 1995

Article copyright:
© Copyright 1996
American Mathematical Society