Stieltjes polynomials and Lagrange interpolation
HTML articles powered by AMS MathViewer
- by Sven Ehrich and Giuseppe Mastroianni PDF
- Math. Comp. 66 (1997), 311-331 Request permission
Abstract:
Bounds are proved for the Stieltjes polynomial $E_{n+1}$, and lower bounds are proved for the distances of consecutive zeros of the Stieltjes polynomials and the Legendre polynomials $P_n$. This sharpens a known interlacing result of Szegö. As a byproduct, bounds are obtained for the Geronimus polynomials $G_n$. Applying these results, convergence theorems are proved for the Lagrange interpolation process with respect to the zeros of $E_{n+1}$, and for the extended Lagrange interpolation process with respect to the zeros of $P_n E_{n+1}$ in the uniform and weighted $L^p$ norms. The corresponding Lebesgue constants are of optimal order.References
- Pierre Barrucand, Intégration numérique, abscisse de Kronrod-Patterson et polynômes de Szegős, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A336–A338 (French). MR 267755
- Helmut Brass, Quadraturverfahren, Studia Mathematica: Skript, vol. 3, Vandenhoeck & Ruprecht, Göttingen, 1977 (German). MR 0443305
- Giuliana Criscuolo and Giuseppe Mastroianni, Fourier and Lagrange operators in some weighted Sobolev-type spaces, Acta Sci. Math. (Szeged) 60 (1995), no. 1-2, 131–148. MR 1348685
- Giuliana Criscuolo, Guiseppe Mastroianni, and Paul Nevai, Mean convergence of derivatives of extended Lagrange interpolation with additional nodes, Math. Nachr. 163 (1993), 73–92. MR 1235057, DOI 10.1002/mana.19931630108
- Giuliana Criscuolo, Giuseppe Mastroianni, and Donatella Occorsio, Convergence of extended Lagrange interpolation, Math. Comp. 55 (1990), no. 191, 197–212. MR 1023044, DOI 10.1090/S0025-5718-1990-1023044-X
- Giuliana Criscuolo, Giuseppe Mastroianni, and Péter Vértesi, Pointwise simultaneous convergence of extended Lagrange interpolation with additional knots, Math. Comp. 59 (1992), no. 200, 515–531. MR 1134723, DOI 10.1090/S0025-5718-1992-1134723-X
- G. Criscuolo, L. Scuderi: Error bounds for product quadrature rules in $L_1$ weighted norm, Calcolo, 31, 1994, 73–93.
- B. Della Vecchia, G. Mastroianni and P. Vértesi: Boundedness of Lagrange and Hermite operators. Preprint.
- L. Durand, Nicholson-type integrals for products of Gegenbauer functions and related topics, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 353–374. MR 0409927
- S. Ehrich: Asymptotic Properties of Stieltjes Polynomials and Gauss–Kronrod Quadrature Formulae, J. Approx. Theory 82, 1995, 287–303.
- K.–J. Förster: A Comparison Theorem for Linear Functionals and its application in Quadrature. In Numerical Integration, Proc. Conf. Oberwolfach, G. Hämmerlin, ed., ISNM 57, Birkhäuser, Basel 1982, 66–76.
- K.-J. Förster: Schranken für die Varianz und die Gewichte von Quadraturformeln. Habilitationsschrift, Tech. Univ. Braunschweig, Germany, 1987.
- K.–J. Förster: Inequalities for Legendre polynomials and application to quadrature. J. Comp. Appl. Math. 33, 1981, 85–95.
- Klaus-Jürgen Förster and Knut Petras, On estimates for the weights in Gaussian quadrature in the ultraspherical case, Math. Comp. 55 (1990), no. 191, 243–264. MR 1023758, DOI 10.1090/S0025-5718-1990-1023758-1
- Walter Gautschi, Gauss-Kronrod quadrature—a survey, Numerical methods and approximation theory, III (Niš, 1987) Univ. Niš, Niš, 1988, pp. 39–66. MR 960329
- Walter Gautschi and Sotirios E. Notaris, An algebraic study of Gauss-Kronrod quadrature formulae for Jacobi weight functions, Math. Comp. 51 (1988), no. 183, 231–248. MR 942152, DOI 10.1090/S0025-5718-1988-0942152-3
- Walter Gautschi and Theodore J. Rivlin, A family of Gauss-Kronrod quadrature formulae, Math. Comp. 51 (1988), no. 184, 749–754. MR 958640, DOI 10.1090/S0025-5718-1988-0958640-X
- J. Geronimus: On a set of Polynomials. Annals Math. 31, 1930, 681–686.
- D. S. Lubinsky, A. Máté, and P. Nevai, Quadrature sums involving $p$th powers of polynomials, SIAM J. Math. Anal. 18 (1987), no. 2, 531–544. MR 876290, DOI 10.1137/0518041
- Giuseppe Mastroianni, Uniform convergence of derivatives of Lagrange interpolation, J. Comput. Appl. Math. 43 (1992), no. 1-2, 37–51. Orthogonal polynomials and numerical methods. MR 1193293, DOI 10.1016/0377-0427(92)90258-Y
- G. Mastroianni: Approximation of functions by extended Lagrange interpolation. In Approximation and Computation, A Festschrift In Honor of Walter Gautschi, R.V.M. Zahar, ed., ISNM 119, Birkhäuser, 1995, 409–420.
- Giuseppe Mastroianni and Paul Nevai, Mean convergence of derivatives of Lagrange interpolation, J. Comput. Appl. Math. 34 (1991), no. 3, 385–396. MR 1102592, DOI 10.1016/0377-0427(91)90096-3
- G. Mastroianni and P. Vértesi: Weighted $L^p$ error of Lagrange interpolation, to appear in J. Approx. Theory.
- G. Mastroianni and P. Vértesi: Error estimates of product quadrature rules. In Numerical Integration IV, Proc. Conf. Oberwolfach, H. Brass and G. Hämmerlin, eds., ISNM 112, Birkhäuser, 1993, 241–252.
- Giovanni Monegato, A note on extended Gaussian quadrature rules, Math. Comp. 30 (1976), no. 136, 812–817. MR 440878, DOI 10.1090/S0025-5718-1976-0440878-3
- Giovanni Monegato, Positivity of the weights of extended Gauss-Legendre quadrature rules, Math. Comp. 32 (1978), no. 141, 243–245. MR 458809, DOI 10.1090/S0025-5718-1978-0458809-0
- Giovanni Monegato, An overview of results and questions related to Kronrod schemes, Numerische Integration (Tagung, Math. Forschungsinst., Oberwolfach, 1978) Internat. Ser. Numer. Math., vol. 45, Birkhäuser, Basel-Boston, Mass., 1979, pp. 231–240. MR 561296
- Giovanni Monegato, Stieltjes polynomials and related quadrature rules, SIAM Rev. 24 (1982), no. 2, 137–158. MR 652464, DOI 10.1137/1024039
- Benjamin Muckenhoupt and Richard L. Wheeden, Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Studia Math. 55 (1976), no. 3, 279–294. MR 417671, DOI 10.4064/sm-55-3-279-294
- Paul Nevai, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc. 282 (1984), no. 2, 669–698. MR 732113, DOI 10.1090/S0002-9947-1984-0732113-4
- Paul Nevai, Hilbert transforms and Lagrange interpolation. Addendum to: “Mean convergence of Lagrange interpolation. III” [Trans. Amer. Math. Soc. 282 (1984), no. 2, 669–698; MR0732113 (85c:41009)], J. Approx. Theory 60 (1990), no. 3, 360–363. MR 1042655, DOI 10.1016/0021-9045(90)90065-X
- D. Occorsio, A good interpolation matrix, Calcolo 30 (1993), no. 2, 107–126 (1994) (Italian, with English summary). MR 1354250, DOI 10.1007/BF02576176
- D. Occorsio: Convergence of extended Lagrange interpolation in weighted $L_p$, Calcolo, 31, 1994, 47–61.
- Franz Peherstorfer, On the asymptotic behaviour of functions of the second kind and Stieltjes polynomials and on the Gauss-Kronrod quadrature formulas, J. Approx. Theory 70 (1992), no. 2, 156–190. MR 1172017, DOI 10.1016/0021-9045(92)90083-Z
- Theodore J. Rivlin, Chebyshev polynomials, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1990. From approximation theory to algebra and number theory. MR 1060735
- G. Szegö: Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören. Math. Ann. 110, 1934, 501–513.
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- Yuan Xu, Mean convergence of generalized Jacobi series and interpolating polynomials. I, J. Approx. Theory 72 (1993), no. 3, 237–251. MR 1209965, DOI 10.1006/jath.1993.1019
Additional Information
- Sven Ehrich
- Affiliation: Universität Hildesheim, Institut für Mathematik, D–31141 Hildesheim, Germany
- Email: ehrich@informatik.uni-hildesheim.de
- Giuseppe Mastroianni
- Affiliation: Università degli Studi della Basilicata, Dipartimento di Matematica, I–85100 Potenza, Italy
- Email: mastroianni@pzvx85.cineca.it
- Received by editor(s): June 20, 1995
- Received by editor(s) in revised form: December 4, 1995
- © Copyright 1997 American Mathematical Society
- Journal: Math. Comp. 66 (1997), 311-331
- MSC (1991): Primary 42A05, 65D05
- DOI: https://doi.org/10.1090/S0025-5718-97-00808-9
- MathSciNet review: 1388888