Quadrature formulae using zeros of Bessel functions as nodes
Author:
Riadh Ben Ghanem
Journal:
Math. Comp. 67 (1998), 323-336
MSC (1991):
Primary 65D32, 41A55, 33C10
DOI:
https://doi.org/10.1090/S0025-5718-98-00882-5
MathSciNet review:
1432128
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A gaussian type quadrature formula, where the nodes are the zeros of Bessel functions of the first kind of order $\alpha$ ($\Re (\alpha ) > -1$), was recently proved for entire functions of exponential type. Here we relax the restriction on $\alpha$ as well as on the function. Some applications are also given.
- Riadh Ben Ghanem and Clément Frappier, Spherical Bessel functions and explicit quadrature formula, Math. Comp. 66 (1997), no. 217, 289–296. MR 1372005, DOI https://doi.org/10.1090/S0025-5718-97-00794-1
- R. P. Boas, Inequalities between series and integrals involving entire functions, J. Indian Math. Soc. 16 (1952), 127-135.
- ---, Entire functions, Academic Press, New York, 1954.
- R. P. Boas Jr., Summation formulas and band-limited signals, Tohoku Math. J. (2) 24 (1972), 121–125. MR 330915, DOI https://doi.org/10.2748/tmj/1178241524
- Clément Frappier and Patrick Olivier, A quadrature formula involving zeros of Bessel functions, Math. Comp. 60 (1993), no. 201, 303–316. MR 1149290, DOI https://doi.org/10.1090/S0025-5718-1993-1149290-5
- C. Frappier and Q. I. Rahman, Une formule de quadrature pour les fonctions entières de type exponentiel, Ann. Sci. Math. Québec 10 (1986), no. 1, 17–26 (French). MR 841119
- R. Gervais, Q. I. Rahman, and G. Schmeisser, Representation and approximation of functions via $(0,2)$-interpolation, J. Approx. Theory 50 (1987), no. 2, 89–110. MR 888292, DOI https://doi.org/10.1016/0021-9045%2887%2990001-3
- Georgi R. Grozev and Qazi I. Rahman, A quadrature formula with zeros of Bessel functions as nodes, Math. Comp. 64 (1995), no. 210, 715–725. MR 1277767, DOI https://doi.org/10.1090/S0025-5718-1995-1277767-2
- Qazi I. Rahman and Gerhard Schmeisser, Quadrature formulae and functions of exponential type, Math. Comp. 54 (1990), no. 189, 245–270. MR 990602, DOI https://doi.org/10.1090/S0025-5718-1990-0990602-8
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. McGraw-Hill Series in Higher Mathematics. MR 0344043
- G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1966.
Retrieve articles in Mathematics of Computation with MSC (1991): 65D32, 41A55, 33C10
Retrieve articles in all journals with MSC (1991): 65D32, 41A55, 33C10
Additional Information
Riadh Ben Ghanem
Affiliation:
Département de Mathématiques et de Statistique, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7
Email:
benghanr@ere.umontreal.ca
Keywords:
Quadrature formulae,
entire functions,
Bessel functions.
Received by editor(s):
March 27, 1996
Received by editor(s) in revised form:
September 11, 1996
Article copyright:
© Copyright 1998
American Mathematical Society