## Steiner systems $S(5,6,v)$ with $v=72$ and $84$

HTML articles powered by AMS MathViewer

- by M. J. Grannell, T. S. Griggs and R. A. Mathon PDF
- Math. Comp.
**67**(1998), 357-359 Request permission

## Abstract:

It is proved that there are precisely 4204 pairwise non-isomorphic Steiner systems $S(5,6,72)$ invariant under the group $\mathrm {PSL}_2(71)$ and which can be constructed using only short orbits. It is further proved that there are precisely 38717 pairwise non-isomorphic Steiner systems $S(5,6,84)$ invariant under the group $\mathrm {PSL}_2(83)$ and which can be constructed using only short orbits.## References

- R. H. F. Denniston,
*Some new $5$-designs*, Bull. London Math. Soc.**8**(1976), no.Β 3, 263β267. MR**480077**, DOI 10.1112/blms/8.3.263 - M. J. Grannell and T. S. Griggs,
*A note on the Steiner systems $\textrm {S}(5,\,6,\,24)$*, Ars Combin.**8**(1979), 45β48. MR**557062** - M. J. Grannell, T. S. Griggs, and R. A. Mathon,
*On Steiner systems $S(5,6,48)$*, J. Combin. Math. Combin. Comput.**12**(1992), 77β96. MR**1189925** - M. J. Grannell, T. S. Griggs, and R. A. Mathon,
*Some Steiner $5$-designs with $108$ and $132$ points*, J. Combin. Des.**1**(1993), no.Β 3, 213β238. MR**1303532**, DOI 10.1002/jcd.3180010304 - W. H. Mills,
*A new $5$-design*, Ars Combin.**6**(1978), 193β195. MR**526104** - Bernd Schmalz,
*$t$-Designs zu vorgegebener Automorphismengruppe*, Bayreuth. Math. Schr.**41**(1992), 164 (German). Dissertation, UniversitΓ€t Bayreuth, Bayreuth, 1992. MR**1166044** - E. Witt,
*Die 5-fach transitiven Gruppen von Mathieu*, Abh. Math. Sem. Univ. Hamburg**12**(1938), 256β264.

## Additional Information

**M. J. Grannell**- Affiliation: Department of Mathematics and Statistics, University of Central Lancashire, Preston PR1 2HE, United Kingdom
**T. S. Griggs**- Affiliation: Department of Mathematics and Statistics, University of Central Lancashire, Preston PR1 2HE, United Kingdom
**R. A. Mathon**- Affiliation: Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4
- Received by editor(s): April 5, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp.
**67**(1998), 357-359 - MSC (1991): Primary 05B05
- DOI: https://doi.org/10.1090/S0025-5718-98-00924-7
- MathSciNet review: 1451323