Steiner systems $S(5,6,v)$ with $v=72$ and $84$
Authors:
M. J. Grannell, T. S. Griggs and R. A. Mathon
Journal:
Math. Comp. 67 (1998), 357-359
MSC (1991):
Primary 05B05
DOI:
https://doi.org/10.1090/S0025-5718-98-00924-7
Supplement:
Additional information related to this article.
MathSciNet review:
1451323
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: It is proved that there are precisely 4204 pairwise non-isomorphic Steiner systems $S(5,6,72)$ invariant under the group $\mathrm {PSL}_2(71)$ and which can be constructed using only short orbits. It is further proved that there are precisely 38717 pairwise non-isomorphic Steiner systems $S(5,6,84)$ invariant under the group $\mathrm {PSL}_2(83)$ and which can be constructed using only short orbits.
- R. H. F. Denniston, Some new $5$-designs, Bull. London Math. Soc. 8 (1976), no. 3, 263β267. MR 480077, DOI https://doi.org/10.1112/blms/8.3.263
- M. J. Grannell and T. S. Griggs, A note on the Steiner systems ${\rm S}(5,\,6,\,24)$, Ars Combin. 8 (1979), 45β48. MR 557062
- M. J. Grannell, T. S. Griggs, and R. A. Mathon, On Steiner systems $S(5,6,48)$, J. Combin. Math. Combin. Comput. 12 (1992), 77β96. MR 1189925
- M. J. Grannell, T. S. Griggs, and R. A. Mathon, Some Steiner $5$-designs with $108$ and $132$ points, J. Combin. Des. 1 (1993), no. 3, 213β238. MR 1303532, DOI https://doi.org/10.1002/jcd.3180010304
- W. H. Mills, A new $5$-design, Ars Combin. 6 (1978), 193β195. MR 526104
- Bernd Schmalz, $t$-Designs zu vorgegebener Automorphismengruppe, Bayreuth. Math. Schr. 41 (1992), 164 (German). Dissertation, UniversitΓ€t Bayreuth, Bayreuth, 1992. MR 1166044
- E. Witt, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1938), 256β264.
Retrieve articles in Mathematics of Computation with MSC (1991): 05B05
Retrieve articles in all journals with MSC (1991): 05B05
Additional Information
M. J. Grannell
Affiliation:
Department of Mathematics and Statistics, University of Central Lancashire, Preston PR1 2HE, United Kingdom
T. S. Griggs
Affiliation:
Department of Mathematics and Statistics, University of Central Lancashire, Preston PR1 2HE, United Kingdom
R. A. Mathon
Affiliation:
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4
Received by editor(s):
April 5, 1996
Article copyright:
© Copyright 1998
American Mathematical Society