A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method
HTML articles powered by AMS MathViewer
- by Ohannes Karakashian and Charalambos Makridakis PDF
- Math. Comp. 67 (1998), 479-499 Request permission
Abstract:
The convergence of the discontinuous Galerkin method for the nonlinear (cubic) Schrödinger equation is analyzed in this paper. We show the existence of the resulting approximations and prove optimal order error estimates in $L^{\infty }(L^{2} ) .$ These estimates are valid under weak restrictions on the space-time mesh.References
- Georgios D. Akrivis, Vassilios A. Dougalis, and Ohannes A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math. 59 (1991), no. 1, 31–53. MR 1103752, DOI 10.1007/BF01385769
- I. Babuška and J. Osborn, Analysis of finite element methods for second order boundary value problems using mesh dependent norms, Numer. Math. 34 (1980), no. 1, 41–62. MR 560793, DOI 10.1007/BF01463997
- L. Bales and I. Lasiecka, Continuous finite elements in space and time for the nonhomogeneous wave equation, Comput. Math. Appl. 27 (1994), no. 3, 91–102. MR 1255008, DOI 10.1016/0898-1221(94)90048-5
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Felix E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, R.I., 1965, pp. 24–49. MR 0197933
- R.Y. Chiao, E. Garmire and C. Townes, Self-trapping of optical beams, Phys. Rev. Lett. 73 (1964), 479–482.
- M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532. MR 878688, DOI 10.1090/S0025-5718-1987-0878688-2
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0448814
- K. Dekker and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differential equations, CWI Monographs, vol. 2, North-Holland Publishing Co., Amsterdam, 1984. MR 774402
- Willy Dörfler, A time- and space-adaptive algorithm for the linear time-dependent Schrödinger equation, Numer. Math. 73 (1996), no. 4, 419–448. MR 1393174, DOI 10.1007/s002110050199
- Todd Dupont, Mesh modification for evolution equations, Math. Comp. 39 (1982), no. 159, 85–107. MR 658215, DOI 10.1090/S0025-5718-1982-0658215-0
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal. 28 (1991), no. 1, 43–77. MR 1083324, DOI 10.1137/0728003
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM J. Numer. Anal. 32 (1995), no. 3, 706–740. MR 1335652, DOI 10.1137/0732033
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems, SIAM J. Numer. Anal. 32 (1995), no. 6, 1729–1749. MR 1360457, DOI 10.1137/0732078
- Kenneth Eriksson, Claes Johnson, and Vidar Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 4, 611–643 (English, with French summary). MR 826227, DOI 10.1051/m2an/1985190406111
- Donald A. French and Todd E. Peterson, A continuous space-time finite element method for the wave equation, Math. Comp. 65 (1996), no. 214, 491–506. MR 1325867, DOI 10.1090/S0025-5718-96-00685-0
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1991. Stiff and differential-algebraic problems. MR 1111480, DOI 10.1007/978-3-662-09947-6
- Thomas J. R. Hughes and Gregory M. Hulbert, Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. Methods Appl. Mech. Engrg. 66 (1988), no. 3, 339–363. MR 928689, DOI 10.1016/0045-7825(88)90006-0
- Pierre Jamet, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain, SIAM J. Numer. Anal. 15 (1978), no. 5, 912–928. MR 507554, DOI 10.1137/0715059
- Claes Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 107 (1993), no. 1-2, 117–129. MR 1241479, DOI 10.1016/0045-7825(93)90170-3
- Ohannes Karakashian, Georgios D. Akrivis, and Vassilios A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 30 (1993), no. 2, 377–400. MR 1211396, DOI 10.1137/0730018
- O. Karakashian and Ch. Makridakis, A space-time finite element mathod for the nonlinear Schrödinger equation: The discontinuous Galerkin method, Preprint no. 96-9, Dept. of Math., University of Crete, Heraklion, Greece (1996).
- O. Karakashian and Ch. Makridakis, A space-time finite element mathod for the nonlinear Schrödinger equation. II: The continuous Galerkin method, Preprint no. 96-11, Dept. of Math., University of Crete, Heraklion, Greece (1996).
- P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Publication No. 33, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. MR 0658142
- Alan C. Newell, Solitons in mathematics and physics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 48, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. MR 847245, DOI 10.1137/1.9781611970227
- J. Juul Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations. I. A general review, Phys. Scripta 33 (1986), no. 6, 481–497. MR 870142, DOI 10.1088/0031-8949/33/6/001
- A. H. Schatz and L. B. Wahlbin, Interior maximum-norm estimates for finite element methods. II, Math. Comp. 64 (1995), no. 211, 907–928. MR 1297478, DOI 10.1090/S0025-5718-1995-1297478-7
- Walter A. Strauss, The nonlinear Schrödinger equation, Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977) North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam-New York, 1978, pp. 452–465. MR 519654
- V.I. Talanov, Self-focusing of wave beams in nonlinear media, JETP Lett. 2 (1965), 138–141.
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, vol. 1054, Springer-Verlag, Berlin, 1984. MR 744045
- G. B. Whitham, Linear and nonlinear waves, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0483954
Additional Information
- Ohannes Karakashian
- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37966
- Email: ohannes@math.utk.edu
- Charalambos Makridakis
- Affiliation: Department of Mathematics, University of Crete, 714 09 Heraklion, Crete, Greece
- MR Author ID: 289627
- Email: makr@sargos.math.uch.gr
- Received by editor(s): February 19, 1996
- Received by editor(s) in revised form: October 25, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Math. Comp. 67 (1998), 479-499
- MSC (1991): Primary 65M60, 65M12
- DOI: https://doi.org/10.1090/S0025-5718-98-00946-6
- MathSciNet review: 1459390