Tables of linear congruential generators of different sizes and good lattice structure
HTML articles powered by AMS MathViewer
- by Pierre L’Ecuyer PDF
- Math. Comp. 68 (1999), 249-260 Request permission
Abstract:
We provide sets of parameters for multiplicative linear congruential generators (MLCGs) of different sizes and good performance with respect to the spectral test. For $\ell = 8, 9, \dots , 64, 127, 128$, we take as a modulus $m$ the largest prime smaller than $2^\ell$, and provide a list of multipliers $a$ such that the MLCG with modulus $m$ and multiplier $a$ has a good lattice structure in dimensions 2 to 32. We provide similar lists for power-of-two moduli $m = 2^{\ell }$, for multiplicative and non-multiplicative LCGs.References
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/978-1-4757-2016-7
- George S. Fishman, Multiplicative congruential random number generators with modulus $2^\beta$: an exhaustive analysis for $\beta =32$ and a partial analysis for $\beta =48$, Math. Comp. 54 (1990), no. 189, 331–344. MR 993929, DOI 10.1090/S0025-5718-1990-0993929-9
- George S. Fishman, Monte Carlo, Springer Series in Operations Research, Springer-Verlag, New York, 1996. Concepts, algorithms, and applications. MR 1392474, DOI 10.1007/978-1-4757-2553-7
- Radu Bǎdescu, On a problem of Goursat, Gaz. Mat. 44 (1939), 571–577. MR 0000087
- Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms. MR 633878
- Pierre L’Ecuyer, Efficient and portable combined random number generators, Comm. ACM 31 (1988), no. 6, 742–749, 774. MR 945034, DOI 10.1145/62959.62969
- —, Random number generation, Handbook on Simulation (Jerry Banks, ed.), Wiley, 1998, To appear.
- P. L’Ecuyer, F. Blouin, and R. Couture, A search for good multiple recursive random number generators, ACM Transactions on Modeling and Computer Simulation 3 (1993), no. 2, 87–98.
- P. L’Ecuyer and R. Couture, An implementation of the lattice and spectral tests for multiple recursive linear random number generators, INFORMS Journal on Computing 9 (1997), no. 2, 206–217.
- F. Delaurens and F.-J. Mustieles, A deterministic particle method for solving kinetic transport equations: the semiconductor Boltzmann equation case, SIAM J. Appl. Math. 52 (1992), no. 4, 973–988. MR 1174041, DOI 10.1137/0152056
- M. Sakamoto and S. Morito, Combination of multiplicative congruential random number generators with safe prime modulus, Proceedings of the 1995 Winter Simulation Conference, IEEE Press, 1995, pp. 309–315.
Additional Information
- Pierre L’Ecuyer
- Affiliation: Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada
- Email: lecuyer@iro.umontreal.ca
- Received by editor(s): May 9, 1997
- Additional Notes: This work has been supported by NSERC-Canada grants ODGP0110050 and SMF0169893, and FCAR-Québec grant 93ER1654. Thanks to Raymond Couture, Peter Hellekalek, and Harald Niederreiter for useful suggestions, to Ajmal Chaumun who helped in computing the tables, and to Karl Entacher who pointed out an error in an earlier version.
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 68 (1999), 249-260
- MSC (1991): Primary 65C10
- DOI: https://doi.org/10.1090/S0025-5718-99-00996-5
- MathSciNet review: 1489972