The $k^{th}$ prime is greater than $k(\ln k + \ln \ln k-1)$ for $k\geq 2$
HTML articles powered by AMS MathViewer
- by Pierre Dusart PDF
- Math. Comp. 68 (1999), 411-415 Request permission
Abstract:
Rosser and Schoenfeld have used the fact that the first 3,500,000 zeros of the Riemann zeta function lie on the critical line to give estimates on $\psi (x)$ and $\theta (x)$. With an improvement of the above result by Brent et al., we are able to improve these estimates and to show that the $k^{th}$ prime is greater than $k(\ln k +\ln \ln k -1)$ for $k\geq 2$. We give further results without proof.References
- R. P. Brent, J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zeros of the Riemann zeta function in the critical strip. II, Math. Comp. 39 (1982), no. 160, 681–688. MR 669660, DOI 10.1090/S0025-5718-1982-0669660-1
- M. Cipolla, La determinazione assintotica dell’$n^{imo}$ numero primo, Matematiche Napoli 3 (1902), 132-166.
- J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zeros of the Riemann zeta function in the critical strip. IV, Math. Comp. 46 (1986), no. 174, 667–681. MR 829637, DOI 10.1090/S0025-5718-1986-0829637-3
- Jean-Pierre Massias and Guy Robin, Bornes effectives pour certaines fonctions concernant les nombres premiers, J. Théor. Nombres Bordeaux 8 (1996), no. 1, 215–242 (French, with French summary). MR 1399956, DOI 10.5802/jtnb.166
- Guy Robin, Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombre premier et grandes valeurs de la fonction $\omega (n)$ nombre de diviseurs premiers de $n$, Acta Arith. 42 (1983), no. 4, 367–389 (French). MR 736719, DOI 10.4064/aa-42-4-367-389
- J. B. Rosser, The $n$-th prime is greater than $n\log n$, Proc. London Math. Soc. (2) 45 (1939), 21-44.
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- Wilhelm Wirtinger, Über eine Minimalaufgabe im Gebiete der analytischen Funktionen von mehreren Veränderlichen, Monatsh. Math. Phys. 47 (1939), 426–431 (German). MR 56, DOI 10.1007/BF01695512
- Wilhelm Wirtinger, Über eine Minimalaufgabe im Gebiete der analytischen Funktionen von mehreren Veränderlichen, Monatsh. Math. Phys. 47 (1939), 426–431 (German). MR 56, DOI 10.1007/BF01695512
Additional Information
- Pierre Dusart
- Affiliation: LACO, ESA 6090, Faculté des Sciences, 123 avenue Albert Thomas, 87060 Limoges Cedex, FRANCE
- Email: dusart@unilim.fr
- Received by editor(s): June 17, 1996
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 68 (1999), 411-415
- MSC (1991): Primary 11N05; Secondary 11A41
- DOI: https://doi.org/10.1090/S0025-5718-99-01037-6
- MathSciNet review: 1620223