Computing rational points
on rank 1 elliptic curves
via -series and canonical heights
Author:
Joseph H. Silverman
Journal:
Math. Comp. 68 (1999), 835-858
MSC (1991):
Primary 11G05, 11Y50
DOI:
https://doi.org/10.1090/S0025-5718-99-01068-6
MathSciNet review:
1627825
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be an elliptic curve of rank 1. We describe an algorithm which uses the value of
and the theory of canonical heghts to efficiently search for points in
and
. For rank 1 elliptic curves
of moderately large conductor (say on the order of
to
) and with a generator having moderately large canonical height (say between 13 and 50), our algorithm is the first practical general purpose method for determining if the set
contains non-torsion points.
- 1. C. Batut, D. Bernardi, H. Cohen, M. Olivier, PARI-GP, a computer system for number theory, Version 1.39.
- 2. H. P. F. Swinnerton-Dyer and B. J. Birch, Elliptic curves and modular functions, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 2–32. Lecture Notes in Math., Vol. 476. MR 0384813
- 3. A. Bremner, On the equation 𝑌²=𝑋(𝑋²+𝑝), Number theory and applications (Banff, AB, 1988) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 3–22. MR 1123066
- 4. A. Bremner and J. W. S. Cassels, On the equation 𝑌²=𝑋(𝑋²+𝑝), Math. Comp. 42 (1984), no. 165, 257–264. MR 726003, https://doi.org/10.1090/S0025-5718-1984-0726003-4
- 5. Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206
- 6. J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1992. MR 1201151
- 7. -, private communication, November 1995.
- 8. Fred Diamond, On deformation rings and Hecke rings, Ann. of Math. (2) 144 (1996), no. 1, 137–166. MR 1405946, https://doi.org/10.2307/2118586
- 9. Noam D. Elkies, Heegner point computations, Algorithmic number theory (Ithaca, NY, 1994) Lecture Notes in Comput. Sci., vol. 877, Springer, Berlin, 1994, pp. 122–133. MR 1322717, https://doi.org/10.1007/3-540-58691-1_49
- 10. Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of 𝐿-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, https://doi.org/10.1007/BF01388809
- 11. V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 435–483. MR 1106906
- 12. David E. Rohrlich, Variation of the root number in families of elliptic curves, Compositio Math. 87 (1993), no. 2, 119–151. MR 1219633
- 13. Karl Rubin, 𝑝-adic 𝐿-functions and rational points on elliptic curves with complex multiplication, Invent. Math. 107 (1992), no. 2, 323–350. MR 1144427, https://doi.org/10.1007/BF01231893
- 14. J.H. Silverman, The Néron-Tate Height on Elliptic Curves, Ph.D. thesis, Harvard, 1981.
- 15. Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210
- 16. Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368
- 17. Joseph H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), no. 192, 723–743. MR 1035944, https://doi.org/10.1090/S0025-5718-1990-1035944-5
- 18. Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, https://doi.org/10.2307/2118560
- 19. Douglas L. Ulmer, A construction of local points on elliptic curves over modular curves, Internat. Math. Res. Notices 7 (1995), 349–363. MR 1350688, https://doi.org/10.1155/S1073792895000262
- 20. Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, https://doi.org/10.2307/2118559
- 21. D. Zagier, private communication.
Retrieve articles in Mathematics of Computation with MSC (1991): 11G05, 11Y50
Retrieve articles in all journals with MSC (1991): 11G05, 11Y50
Additional Information
Joseph H. Silverman
Affiliation:
Mathematics Department, Box 1917, Brown University, Providence, RI 02912 USA
Email:
jhs@gauss.math.brown.edu
DOI:
https://doi.org/10.1090/S0025-5718-99-01068-6
Keywords:
Elliptic curve,
canonical height
Received by editor(s):
May 8, 1996
Received by editor(s) in revised form:
March 3, 1997
Additional Notes:
Research partially supported by NSF DMS-9424642.
Article copyright:
© Copyright 1999
American Mathematical Society