## Values of the Legendre chi and Hurwitz zeta functions at rational arguments

HTML articles powered by AMS MathViewer

- by Djurdje Cvijović and Jacek Klinowski PDF
- Math. Comp.
**68**(1999), 1623-1630 Request permission

## Abstract:

We show that the Hurwitz zeta function, $\zeta (\nu ,a)$, and the Legendre chi function, $\chi _\nu (z)$, defined by \[ \zeta (\nu ,a)=\sum _{k=0}^\infty \frac {1}{(k+a)^\nu },\quad 0<a\le 1,\operatorname {Re} \nu >1,\] and \[ \chi _\nu (z)=\sum _{k=0}^\infty \frac {z^{2k+1}}{(2k+1)^\nu },\quad |z|\le 1,\operatorname {Re} \nu >1 \text {with} \nu =2,3,4,\dotsc ,\] respectively, form a discrete Fourier transform pair. Many formulae involving the values of these functions at rational arguments, most of them unknown, are obtained as a corollary to this result. Among them is the further simplification of the summation formulae from our earlier work on closed form summation of some trigonometric series for rational arguments. Also, these transform relations make it likely that other results can be easily recovered and unified in a more general context.## References

- Kevin M. Dempsey, Dajin Liu, and John P. Dempsey,
*Plana’s summation formula for $\sum ^\infty _{m=1,3,\cdots }m^{-2}\sin (m\alpha ),m^{-3}\cos (m\alpha ),m^{-2}A^m,m^{-3}A^m$*, Math. Comp.**55**(1990), no. 192, 693–703. MR**1035929**, DOI 10.1090/S0025-5718-1990-1035929-9 - Walter Gautschi,
*On certain slowly convergent series occurring in plate contact problems*, Math. Comp.**57**(1991), no. 195, 325–338. MR**1079018**, DOI 10.1090/S0025-5718-1991-1079018-7 - J. Boersma and J. P. Dempsey,
*On the numerical evaluation of Legendre’s chi-function*, Math. Comp.**59**(1992), no. 199, 157–163. MR**1134715**, DOI 10.1090/S0025-5718-1992-1134715-0 - Djurdje Cvijović and Jacek Klinowski,
*Closed-form summation of some trigonometric series*, Math. Comp.**64**(1995), no. 209, 205–210. MR**1270616**, DOI 10.1090/S0025-5718-1995-1270616-8 - H. Joseph Weaver,
*Theory of discrete and continuous Fourier analysis*, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. MR**974113** - Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni,
*Formulas and theorems for the special functions of mathematical physics*, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR**0232968**, DOI 10.1007/978-3-662-11761-3 - Leonard Lewin,
*Polylogarithms and associated functions*, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR**618278** - Milton Abramowitz and Irene A. Stegun (eds.),
*Handbook of mathematical functions, with formulas, graphs and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 20402, 1966. Fifth printing, with corrections; National Bureau of Standards, Washington, D.C., (for sale by the Superintendent of Documents). MR**0208798** - Djurdje Cvijović and Jacek Klinowski,
*New formulae for the Bernoulli and Euler polynomials at rational arguments*, Proc. Amer. Math. Soc.**123**(1995), no. 5, 1527–1535. MR**1283544**, DOI 10.1090/S0002-9939-1995-1283544-0

## Additional Information

**Djurdje Cvijović**- Affiliation: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Email: dc133@cam.ac.uk
**Jacek Klinowski**- Affiliation: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Email: jk18@cam.ac.uk
- Received by editor(s): February 16, 1998
- Published electronically: May 17, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp.
**68**(1999), 1623-1630 - MSC (1991): Primary 65B10; Secondary 11M35
- DOI: https://doi.org/10.1090/S0025-5718-99-01091-1
- MathSciNet review: 1648375