Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Transformation of hypersingular integrals and black-box cubature

Authors: S. A. Sauter and C. Lage
Journal: Math. Comp. 70 (2001), 223-250
MSC (2000): Primary 65N38, 65R10, 65R20
Published electronically: June 12, 2000
MathSciNet review: 1803126
Full-text PDF

Abstract | References | Similar Articles | Additional Information


In this paper, we will consider hypersingular integrals as they arise by transforming elliptic boundary value problems into boundary integral equations. First, local representations of these integrals will be derived. These representations contain so-called finite-part integrals. In the second step, these integrals are reformulated as improper integrals. We will show that these integrals can be treated by cubature methods for weakly singular integrals as they exist in the literature.

References [Enhancements On Off] (What's this?)

  • 1. D. G. Anderson.
    Gaussian quadrature formula for $\int -\ln \left( x\right) f\left( x\right) dx$.
    Math. Comp., 19:477-481, 1965. MR 31:2826
  • 2. K. Atkinson.
    Solving Integral Equations on Surfaces in Space.
    In G. Hämmerlin and K. Hoffmann, editors, Constructive Methods for the Practical Treatment of Integral Equations, pages 20-43. Birkhäuser: ISNM, 1985. CMP 19:10
  • 3. M. Costabel.
    Boundary integral operators on Lipschitz domains: Elementary results.
    SIAM, J. Math. Anal., 19:613-626, 1988. MR 89h:35090
  • 4. S. Erichsen and S. Sauter.
    Efficient automatic quadrature in 3-d Galerkin BEM.
    Comp. Meth. Appl. Mech. Eng., 157:215-224, 1998. MR 99e:65163
  • 5. I. Graham, W. Hackbusch, and S. Sauter.
    Discrete boundary element methods on general meshes in 3d.
    Technical Report 97/19, University of Bath, U.K., 1997.
    Mathematics Preprint, to appear in Numer. Math.
  • 6. M. Guiggiani.
    Direct Evaluation of Hypersingular Integrals in 2D BEM.
    In W. Hackbusch, editor, Proc. Of 7th GAMM Seminar on Numerical Techniques for BEM, Kiel 1991, pages 23-34, Braunschweig, 1991. Vieweg.
  • 7. M. Guiggiani and A. Gigante.
    A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method.
    ASME J. Appl. Mech., 57:907-915. MR 93b:73037
  • 8. W. Hackbusch.
    Integral Equations.
    ISNM. Birkhäuser, 1995. MR 96h:45001
  • 9. W. Hackbusch and S. Sauter.
    On the Efficient Use of the Galerkin Method to Solve Fredholm Integral Equations.
    Applications of Mathematics, 38(4-5):301-322, 1993. MR 95c:65204
  • 10. H. Han.
    A Boundary Element Method for Signorini Problems in Three Dimensions.
    Numer. Math., 60:63-76, 1991. MR 93a:65166
  • 11. H. Han.
    The Boundary Integro-Differential Equations of Three-Dimensional Neumann Problem in Linear Elasticity.
    Numer. Math., 68(2):269-281, 1994. MR 95e:65109
  • 12. R. Kieser.
    Über einseitige Sprungrelationen und hypersinguläre Operatoren in der Methode der Randelemente.
    PhD thesis, Mathematisches Institut A, Universität Stuttgart, Germany, 1990.
  • 13. R. Kieser, C. Schwab, and W. L. Wendland.
    Numerical Evaluation of Singular and Finite-Part Integrals on Curved Surfaces Using Symbolic Manipulation.
    Computing, 49:279-301, 1992. MR 93e:65037
  • 14. C. Lage.
    Software Development for Boundary Element Mehtods: Analysis and Design of Efficient Techniques (in German).
    PhD thesis, Lehrstuhl Prakt. Math., Universität Kiel, 1995.
  • 15. J. Lyness.
    Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity.
    J. Comp. Phys., 20:346-364, 1976. MR 52:15972
  • 16. J. Lyness.
    An error functional expression for N-dimensional quadrature with an integrand function singular at a point.
    Math. Comp., 30:1-23, 1976. MR 53:11976
  • 17. J. Lyness and G. Monegato.
    Quadrature error functional expansions for the simplex when the integrand function has singularities at vertices.
    Math. Comp., 34:213-225, 1980. MR 80m:65017
  • 18. S. Mikhlin and S. Prößdorf.
    Singular Integral Operators.
    Springer-Verlag, Heidelberg, 1986. MR 88e:47097
  • 19. J. Nédélec.
    Curved Finite Element Methods for the Solution of Singular Integral Equations on Surfaces in $\mathbf{R}^3$.
    Comput. Meth. Appl. Mech. Engrg., 8:61-80, 1976. MR 58:19275
  • 20. J. Nédélec.
    Integral Equations with Non Integrable Kernels.
    Integral Equations Oper. Theory, 5:562-572, 1982. MR 84i:45011
  • 21. O. Oleinik, A. Shamaev, and G. Yosifian.
    Mathematical Problems in Elasticity and Homogenization.
    North-Holland, Amsterdam, 1992. MR 93k:35025
  • 22. S. Sauter and C. Lage.
    Transformation of hypersingular integrals and black-box cubature (extended version).
    Technical Report 97-17, Universität Kiel, 1997.
    (Available via WWW-address:
  • 23. S. A. Sauter.
    Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fredholmscher Integralgleichungen.
    PhD thesis, Inst. f. Prakt. Math., Universität Kiel, 1992.
  • 24. S. A. Sauter and A. Krapp.
    On the Effect of Numerical Integration in the Galerkin Boundary Element Method.
    Numer. Math., 74(3):337-360, 1996. MR 97j:65189
  • 25. C. Schwab and W. Wendland.
    Kernel Properties and Representations of Boundary Integral Operators.
    Math. Nachr., 156:187-218, 1992. MR 94g:65135
  • 26. C. Schwab and W. Wendland.
    On Numerical Cubatures of Singular Surface Integrals in Boundary Element Methods.
    Numer. Math., 62:343-369, 1992. MR 93h:65035
  • 27. T.von Petersdorff and C. Schwab.
    Fully Discrete Multiscale Galerkin BEM.
    In W. Dahmen, P. Kurdila, and P. Oswald, editors, Multiresolution Analysis and Partial Differential Equations, pages 287-346, New York, 1997. Academic Press. MR 99a:65158
  • 28. W. Wendland.
    Strongly elliptic boundary integral equations.
    In A. Iserles and M. Powell, editors, The State of the Art in Numerical Analysis, pages 511-561, Oxford, 1987. Clarendon Press. MR 88m:65209

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N38, 65R10, 65R20

Retrieve articles in all journals with MSC (2000): 65N38, 65R10, 65R20

Additional Information

S. A. Sauter
Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstr. 190, CH-8050 Zürich, Switzerland

C. Lage
Affiliation: Coyote Systems, 2740 Van Ness Avenue #210, San Francisco, CA 94109

Keywords: Finite-part integrals, regularisation, numerical integration, boundary element methods
Received by editor(s): January 8, 1998
Published electronically: June 12, 2000
Article copyright: © Copyright 2000 American Mathematical Society