Transformation of hypersingular integrals and black-box cubature
Authors:
S. A. Sauter and C. Lage
Journal:
Math. Comp. 70 (2001), 223-250
MSC (2000):
Primary 65N38, 65R10, 65R20
DOI:
https://doi.org/10.1090/S0025-5718-00-01261-8
Published electronically:
June 12, 2000
MathSciNet review:
1803126
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we will consider hypersingular integrals as they arise by transforming elliptic boundary value problems into boundary integral equations. First, local representations of these integrals will be derived. These representations contain so-called finite-part integrals. In the second step, these integrals are reformulated as improper integrals. We will show that these integrals can be treated by cubature methods for weakly singular integrals as they exist in the literature.
- Donald G. Anderson, Gaussian quadrature formulae for $\int _{0}^{1}-{\rm ln}(x)f(x)\,dx$, Math. Comp. 19 (1965), 477–481. MR 178569, DOI https://doi.org/10.1090/S0025-5718-1965-0178569-1
- K. Atkinson. Solving Integral Equations on Surfaces in Space. In G. Hämmerlin and K. Hoffmann, editors, Constructive Methods for the Practical Treatment of Integral Equations, pages 20–43. Birkhäuser: ISNM, 1985.
- Martin Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal. 19 (1988), no. 3, 613–626. MR 937473, DOI https://doi.org/10.1137/0519043
- Stefan Erichsen and Stefan A. Sauter, Efficient automatic quadrature in $3$-d Galerkin BEM, Comput. Methods Appl. Mech. Engrg. 157 (1998), no. 3-4, 215–224. Seventh Conference on Numerical Methods and Computational Mechanics in Science and Engineering (NMCM 96) (Miskolc). MR 1634288, DOI https://doi.org/10.1016/S0045-7825%2897%2900236-3
- I. Graham, W. Hackbusch, and S. Sauter. Discrete boundary element methods on general meshes in 3d. Technical Report 97/19, University of Bath, U.K., 1997. Mathematics Preprint, to appear in Numer. Math.
- M. Guiggiani. Direct Evaluation of Hypersingular Integrals in 2D BEM. In W. Hackbusch, editor, Proc. Of 7th GAMM Seminar on Numerical Techniques for BEM, Kiel 1991, pages 23–34, Braunschweig, 1991. Vieweg.
- M. Guiggiani and A. Gigante, A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method, Trans. ASME J. Appl. Mech. 57 (1990), no. 4, 906–915. MR 1165521, DOI https://doi.org/10.1115/1.2897660
- Wolfgang Hackbusch, Integral equations, International Series of Numerical Mathematics, vol. 120, Birkhäuser Verlag, Basel, 1995. Theory and numerical treatment; Translated and revised by the author from the 1989 German original. MR 1350296
- Wolfgang Hackbush and Stefan A. Sauter, On the efficient use of the Galerkin method to solve Fredholm integral equations, Proceedings of ISNA ’92—International Symposium on Numerical Analysis, Part I (Prague, 1992), 1993, pp. 301–322. MR 1228511
- Hou De Han, A boundary element method for Signorini problems in three dimensions, Numer. Math. 60 (1991), no. 1, 63–75. MR 1131499, DOI https://doi.org/10.1007/BF01385714
- Hou De Han, The boundary integro-differential equations of three-dimensional Neumann problem in linear elasticity, Numer. Math. 68 (1994), no. 2, 269–281. MR 1283342, DOI https://doi.org/10.1007/s002110050061
- R. Kieser. Über einseitige Sprungrelationen und hypersinguläre Operatoren in der Methode der Randelemente. PhD thesis, Mathematisches Institut A, Universität Stuttgart, Germany, 1990.
- José M. Pérez-Jordá, Emilio San-Fabián, and Federico Moscardó, A simple, reliable and efficient scheme for automatic numerical integration, Comput. Phys. Comm. 70 (1992), no. 2, 271–284. MR 1173951, DOI https://doi.org/10.1016/0010-4655%2892%2990192-2
- C. Lage. Software Development for Boundary Element Mehtods: Analysis and Design of Efficient Techniques (in German). PhD thesis, Lehrstuhl Prakt. Math., Universität Kiel, 1995.
- J. N. Lyness, Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity, J. Comput. Phys. 20 (1976), no. 3, 346–364. MR 395174, DOI https://doi.org/10.1016/0021-9991%2876%2990087-5
- J. N. Lyness, An error functional expansion for $N$-dimensional quadrature with an integrand function singular at a point, Math. Comp. 30 (1976), no. 133, 1–23. MR 408211, DOI https://doi.org/10.1090/S0025-5718-1976-0408211-0
- J. N. Lyness and G. Monegato, Quadrature error functional expansions for the simplex when the integrand function has singularities at vertices, Math. Comp. 34 (1980), no. 149, 213–225. MR 551299, DOI https://doi.org/10.1090/S0025-5718-1980-0551299-8
- Solomon G. Mikhlin and Siegfried Prössdorf, Singular integral operators, Springer-Verlag, Berlin, 1986. Translated from the German by Albrecht Böttcher and Reinhard Lehmann. MR 881386
- J.-C. Nédélec, Curved finite element methods for the solution of integral singular equations on surfaces in ${\bf R}^{3}$, Computing methods in applied sciences and engineering (Second Internat. Sympos., Versailles, 1975) Springer, Berlin, 1976, pp. 374–390. Lecture Notes in Econom. and Math. Systems, Vol. 134. MR 0502111
- J.-C. Nédélec, Integral equations with nonintegrable kernels, Integral Equations Operator Theory 5 (1982), no. 4, 562–572. MR 665149, DOI https://doi.org/10.1007/BF01694054
- O. A. Oleĭnik, A. S. Shamaev, and G. A. Yosifian, Mathematical problems in elasticity and homogenization, Studies in Mathematics and its Applications, vol. 26, North-Holland Publishing Co., Amsterdam, 1992. MR 1195131
- S. Sauter and C. Lage. Transformation of hypersingular integrals and black-box cubature (extended version). Technical Report 97-17, Universität Kiel, 1997. (Available via WWW-address: http://www.numerik.uni-kiel.de/reports/1997/).
- S. A. Sauter. Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fredholmscher Integralgleichungen. PhD thesis, Inst. f. Prakt. Math., Universität Kiel, 1992.
- S. A. Sauter and A. Krapp, On the effect of numerical integration in the Galerkin boundary element method, Numer. Math. 74 (1996), no. 3, 337–359. MR 1408607, DOI https://doi.org/10.1007/s002110050220
- C. Schwab and W. L. Wendland, Kernel properties and representations of boundary integral operators, Math. Nachr. 156 (1992), 187–218. MR 1233945, DOI https://doi.org/10.1002/mana.19921560113
- C. Schwab and W. L. Wendland, On numerical cubatures of singular surface integrals in boundary element methods, Numer. Math. 62 (1992), no. 3, 343–369. MR 1169009, DOI https://doi.org/10.1007/BF01396234
- Tobias von Petersdorff and Christoph Schwab, Fully discrete multiscale Galerkin BEM, Multiscale wavelet methods for partial differential equations, Wavelet Anal. Appl., vol. 6, Academic Press, San Diego, CA, 1997, pp. 287–346. MR 1475002, DOI https://doi.org/10.1016/S1874-608X%2897%2980009-X
- W. L. Wendland, Strongly elliptic boundary integral equations, The state of the art in numerical analysis (Birmingham, 1986) Inst. Math. Appl. Conf. Ser. New Ser., vol. 9, Oxford Univ. Press, New York, 1987, pp. 511–562. MR 921677
Retrieve articles in Mathematics of Computation with MSC (2000): 65N38, 65R10, 65R20
Retrieve articles in all journals with MSC (2000): 65N38, 65R10, 65R20
Additional Information
S. A. Sauter
Affiliation:
Institut für Mathematik, Universität Zürich, Winterthurerstr. 190, CH-8050 Zürich, Switzerland
MR Author ID:
313335
Email:
stas@amath.unizh.ch
C. Lage
Affiliation:
Coyote Systems, 2740 Van Ness Avenue #210, San Francisco, CA 94109
Email:
lage@coyotesystems.com
Keywords:
Finite-part integrals,
regularisation,
numerical integration,
boundary element methods
Received by editor(s):
January 8, 1998
Published electronically:
June 12, 2000
Article copyright:
© Copyright 2000
American Mathematical Society