## Wavelet bases in $\mathbf {H}( \mathrm {div})$ and $\mathbf {H}(\mathbf {curl})$

HTML articles powered by AMS MathViewer

- by Karsten Urban PDF
- Math. Comp.
**70**(2001), 739-766 Request permission

## Abstract:

Some years ago, compactly supported divergence-free wavelets were constructed which also gave rise to a stable (biorthogonal) wavelet splitting of $\mathbf {H}(\mathrm {div};\Omega )$. These bases have successfully been used both in the analysis and numerical treatment of the Stokes and Navier–Stokes equations. In this paper, we construct stable wavelet bases for the stream function spaces $\mathbf {H}(\mathbf {curl};\Omega )$. Moreover, $\mathbf {curl}$-free vector wavelets are constructed and analysed. The relationship between $\mathbf {H}(\mathrm {div};\Omega )$ and $\mathbf {H}(\mathbf {curl};\Omega )$ are expressed in terms of these wavelets. We obtain discrete (orthogonal) Hodge decompositions. Our construction works independently of the space dimension, but in terms of general assumptions on the underlying wavelet systems in $L^2(\Omega )$ that are used as building blocks. We give concrete examples of such bases for tensor product and certain more general domains $\Omega \subset \mathbb {R}^n$. As an application, we obtain wavelet multilevel preconditioners in $\mathbf {H}(\mathrm {div};\Omega )$ and $\mathbf {H}(\mathbf {curl};\Omega )$.## References

- Douglas N. Arnold, Richard S. Falk, and R. Winther,
*Preconditioning in $H(\textrm {div})$ and applications*, Math. Comp.**66**(1997), no. 219, 957–984. MR**1401938**, DOI 10.1090/S0025-5718-97-00826-0 - D.N. Arnold, R.S. Falk, and R. Winther,
*Multigrid in $H(\operatorname {div})$ and $H(\mathbf {curl})$*, Dept. of Math., Penn State Univ., Preprint, 1998. - A. Barinka, T. Barsch, K. Urban, and J. Vorloeper,
*The Multilevel Library: Software Tools for Multiscale Methods and Wavelets, Version 1.0, Documentation*, RWTH Aachen, IGPM Preprint 156, 1998. - R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe, and B. Wohlmuth,
*Adaptive multilevel methods for edge element discretizations of Maxwell’s equations*, ZIB Berlin, Report SC-97-66, 1997, to appear in Surveys of Mathematics in Industry. - G. Beylkin, R. Coifman, and V. Rokhlin,
*Fast wavelet transforms and numerical algorithms. I*, Comm. Pure Appl. Math.**44**(1991), no. 2, 141–183. MR**1085827**, DOI 10.1002/cpa.3160440202 - Alain Bossavit,
*Computational electromagnetism*, Electromagnetism, Academic Press, Inc., San Diego, CA, 1998. Variational formulations, complementarity, edge elements. MR**1488417** - F. Brezzi and L. D. Marini,
*A three-field domain decomposition method*, Domain decomposition methods in science and engineering (Como, 1992) Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 27–34. MR**1262602**, DOI 10.1090/conm/157/01402 - Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang,
*Spectral methods in fluid dynamics*, Springer Series in Computational Physics, Springer-Verlag, New York, 1988. MR**917480**, DOI 10.1007/978-3-642-84108-8 - Claudio Canuto, Anita Tabacco, and Karsten Urban,
*The wavelet element method. I. Construction and analysis*, Appl. Comput. Harmon. Anal.**6**(1999), no. 1, 1–52. MR**1664902**, DOI 10.1006/acha.1997.0242 - C. Canuto, A. Tabacco, and K. Urban,
*The wavelet element method, part II: Realization and additional features in 2d and 3d*, Preprint 1052, Instituto di Analisi Numerica del C.N.R., Pavia, 1997. To appear in Appl. Comp. Harm. Anal. - A. Cohen,
*Wavelet methods in Numerical Analysis*, in: Handbook of Numerical Analysis, North Holland, Amsterdam, to appear. - A. Cohen, Ingrid Daubechies, and J.-C. Feauveau,
*Biorthogonal bases of compactly supported wavelets*, Comm. Pure Appl. Math.**45**(1992), no. 5, 485–560. MR**1162365**, DOI 10.1002/cpa.3160450502 - Albert Cohen, Ingrid Daubechies, and Pierre Vial,
*Wavelets on the interval and fast wavelet transforms*, Appl. Comput. Harmon. Anal.**1**(1993), no. 1, 54–81. MR**1256527**, DOI 10.1006/acha.1993.1005 - A. Cohen and R. Masson,
*Wavelet methods for second order elliptic problems — preconditioning and adaptivity*, Preprint, Univ. P. et M. Curie, Paris, 1997. - A. Cohen and R. Masson,
*Wavelet adaptive method for second order elliptic problems — boundary conditions and domain decomposition*, Preprint, Univ. P. et M. Curie, Paris, 1997. - Wolfgang Dahmen,
*Wavelet and multiscale methods for operator equations*, Acta numerica, 1997, Acta Numer., vol. 6, Cambridge Univ. Press, Cambridge, 1997, pp. 55–228. MR**1489256**, DOI 10.1017/S0962492900002713 - W. Dahmen, A. Kunoth, and K. Urban,
*A wavelet Galerkin method for the Stokes equations*, Computing**56**(1996), no. 3, 259–301 (English, with English and German summaries). International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994). MR**1393010**, DOI 10.1007/BF02238515 - Wolfgang Dahmen, Angela Kunoth, and Karsten Urban,
*Biorthogonal spline wavelets on the interval—stability and moment conditions*, Appl. Comput. Harmon. Anal.**6**(1999), no. 2, 132–196. MR**1676771**, DOI 10.1006/acha.1998.0247 - Wolfgang Dahmen and Reinhold Schneider,
*Composite wavelet bases for operator equations*, Math. Comp.**68**(1999), no. 228, 1533–1567. MR**1648379**, DOI 10.1090/S0025-5718-99-01092-3 - W. Dahmen and R. Schneider,
*Wavelets on Manifolds I: Construction and Domain Decomposition*, RWTH Aachen, IGPM Preprint 149, 1998. To appear in SIAM J. Math. Anal. - Wolfgang Dahmen and Reinhold Schneider,
*Wavelets with complementary boundary conditions—function spaces on the cube*, Results Math.**34**(1998), no. 3-4, 255–293. MR**1652724**, DOI 10.1007/BF03322055 - Ingrid Daubechies,
*Ten lectures on wavelets*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1162107**, DOI 10.1137/1.9781611970104 - C. A. J. Fletcher,
*Computational techniques for fluid dynamics. 1*, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1988. Fundamental and general techniques. MR**960882** - R. Hiptmair,
*Multilevel Preconditioning for Mixed Problems in Three Dimensions*, PhD–Thesis, Univ. of Augsburg, 1996. - Vivette Girault and Pierre-Arnaud Raviart,
*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383**, DOI 10.1007/978-3-642-61623-5 - Pierre Gilles Lemarie-Rieusset,
*Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle*, Rev. Mat. Iberoamericana**8**(1992), no. 2, 221–237 (French, with English and French summaries). MR**1191345**, DOI 10.4171/RMI/123 - Pierre-Gilles Lemarié-Rieusset,
*Un théorème d’inexistence pour les ondelettes vecteurs à divergence nulle*, C. R. Acad. Sci. Paris Sér. I Math.**319**(1994), no. 8, 811–813 (French, with English and French summaries). MR**1300948** - R. Masson,
*Wavelet discretizations of the Stokes problem in velocity–pressure variables*, Preprint, Univ. P. et M. Curie, Paris, 1998. - Y. Meyer, Ondelettes et Opèrateurs, vol. I (in french), Hermann, Paris, 1990.
- J.E. Roberts and J.-M. Thomas,
*Mixed and hybrid methods*, in: Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions (eds.), Elsevier Science Publishers, North–Holland, 1991, 523–640. - Gilbert Strang and Truong Nguyen,
*Wavelets and filter banks*, Wellesley-Cambridge Press, Wellesley, MA, 1996. MR**1411910** - Karsten Urban,
*On divergence-free wavelets*, Adv. Comput. Math.**4**(1995), no. 1-2, 51–81. MR**1338895**, DOI 10.1007/BF02123473 - K. Urban, Multiskalenverfahren für das Stokes-Problem und angepaßte Wavelet-Basen (in german), PhD thesis, Verlag der Augustinus-Buchhandlung, Aachen, 1995.
- Mladen Victor Wickerhauser,
*Adapted wavelet analysis from theory to software*, A K Peters, Ltd., Wellesley, MA, 1994. With a separately available computer disk (IBM-PC or Macintosh). MR**1299983**

## Additional Information

**Karsten Urban**- Affiliation: RWTH Aachen, Institut für Geometrie und Praktische Mathematik, Templergraben 55, 52056 Aachen, Germany
- Address at time of publication: Istituto di Analisi Numerica del C.N.R., via Abbiategrasso 209, 27100 Pavia, Italy
- Email: urban@igpm.rwth-aachen.de
- Received by editor(s): January 4, 1999
- Received by editor(s) in revised form: May 24, 1999
- Published electronically: May 19, 2000
- Additional Notes: I am very grateful to Franco Brezzi and Claudio Canuto for fruitful and interesting discussions as well as helpful remarks. This paper was written when the author was in residence at the Istituto di Analisi Numerica del C.N.R. in Pavia, Italy.

This work was supported by the*European Commission*within the TMR project (Training and Mobilty for Researchers)*Wavelets and Multiscale Methods in Numerical Analysis and Simulation*, No. ERB FMRX CT98 0184 and by the*German Academic Exchange Service (DAAD)*within the Vigoni–Project*Multilevel–Zerlegungsverfahren für Partielle Differentialgleichungen*. - © Copyright 2000 American Mathematical Society
- Journal: Math. Comp.
**70**(2001), 739-766 - MSC (2000): Primary 65T60; Secondary 35Q60, 35Q30
- DOI: https://doi.org/10.1090/S0025-5718-00-01245-X
- MathSciNet review: 1710628