Hermite interpolation of nonsmooth functions preserving boundary conditions
HTML articles powered by AMS MathViewer
- by V. Girault and L. R. Scott;
- Math. Comp. 71 (2002), 1043-1074
- DOI: https://doi.org/10.1090/S0025-5718-02-01446-1
- Published electronically: January 17, 2002
- PDF | Request permission
Abstract:
This article is devoted to the construction of a Hermite-type regularization operator transforming functions that are not necessarily ${\mathcal C}^1$ into globally ${\mathcal C}^1$ finite-element functions that are piecewise polynomials. This regularization operator is a projection, it preserves appropriate first and second order polynomial traces, and it has approximation properties of optimal order. As an illustration, it is used to discretize a nonhomogeneous Navier-Stokes problem, with tangential boundary condition.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 450957
- Chérif Amrouche and Vivette Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 44(119) (1994), no. 1, 109–140. MR 1257940
- Douglas N. Arnold, L. Ridgway Scott, and Michael Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 2, 169–192 (1989). MR 1007396
- C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements, SIAM J. Numer. Anal. 35 (1998), no. 5, 1893–1916. MR 1639966, DOI 10.1137/S0036142995293766
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441–463. MR 559195, DOI 10.1090/S0025-5718-1980-0559195-7
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Leray, J., “Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique,” J. Math. Pures Appl., 12, pp.1–82, (1933).
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 259693
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 247243
- John Morgan and Ridgway Scott, A nodal basis for $C^{1}$ piecewise polynomials of degree $n\geq 5$, Math. Comput. 29 (1975), 736–740. MR 375740, DOI 10.1090/S0025-5718-1975-0375740-7
- Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 227584
- L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 111–143 (English, with French summary). MR 813691, DOI 10.1051/m2an/1985190101111
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 290095
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. MR 1441312, DOI 10.1007/978-1-4612-0645-3
- Rüdiger Verfürth, Error estimates for some quasi-interpolation operators, M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 695–713 (English, with English and French summaries). MR 1726480, DOI 10.1051/m2an:1999158
Bibliographic Information
- V. Girault
- Affiliation: Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, 75252 Paris cedex 05, France
- Email: girault@ann.jussieu.fr
- L. R. Scott
- Affiliation: Department of Mathematics and the Computation Institute, University of Chicago, Chicago, Illinois 60637-1581
- MR Author ID: 157720
- Email: ridg@uchicago.edu
- Received by editor(s): October 15, 1999
- Published electronically: January 17, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 71 (2002), 1043-1074
- MSC (2000): Primary 65D05; Secondary 65N15, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-02-01446-1
- MathSciNet review: 1898745