Efficient solution of rational conics
HTML articles powered by AMS MathViewer
- by J. E. Cremona and D. Rusin;
- Math. Comp. 72 (2003), 1417-1441
- DOI: https://doi.org/10.1090/S0025-5718-02-01480-1
- Published electronically: December 18, 2002
- PDF | Request permission
Abstract:
We present efficient algorithms for solving Legendre equations over $\mathbb Q$ (equivalently, for finding rational points on rational conics) and parametrizing all solutions. Unlike existing algorithms, no integer factorization is required, provided that the prime factors of the discriminant are known.References
- B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79–108. MR 179168, DOI 10.1515/crll.1965.218.79
- J. W. S. Cassels, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991. MR 1144763, DOI 10.1017/CBO9781139172530
- Todd Cochrane and Patrick Mitchell, Small solutions of the Legendre equation, J. Number Theory 70 (1998), no. 1, 62–66. MR 1619944, DOI 10.1006/jnth.1998.2221
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- J. E. Cremona, Higher descents on elliptic curves, preprint: see http://www.maths.nott.ac.uk/personal/jec/papers/d2.ps.
- István Gaál, Attila Pethő, and Michael Pohst, Simultaneous representation of integers by a pair of ternary quadratic forms—with an application to index form equations in quartic number fields, J. Number Theory 57 (1996), no. 1, 90–104. MR 1378574, DOI 10.1006/jnth.1996.0035
- Carl Friedrich Gauss, Disquisitiones arithmeticae, Springer-Verlag, New York, 1986. Translated and with a preface by Arthur A. Clarke; Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse. MR 837656
- Kenneth F. Ireland and Michael I. Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York-Berlin, 1982. Revised edition of Elements of number theory. MR 661047
- B. Mazur, On the passage from local to global in number theory, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 14–50. MR 1202293, DOI 10.1090/S0273-0979-1993-00414-2
- L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR 249355
- Michael E. Pohst, On Legendre’s equation over number fields, Publ. Math. Debrecen 56 (2000), no. 3-4, 535–546. Dedicated to Professor Kálmán Győry on the occasion of his 60th birthday. MR 1765998, DOI 10.5486/pmd.2000.2410
- John M. Pollard and Claus-P. Schnorr, An efficient solution of the congruence $x^2+ky^2=m\pmod n$, IEEE Trans. Inform. Theory 33 (1987), no. 5, 702–709. MR 918192, DOI 10.1109/TIT.1987.1057350
- Heinrich Rolletschek, On the number of divisions of the Euclidean algorithm applied to Gaussian integers, J. Symbolic Comput. 2 (1986), no. 3, 261–291. MR 860539, DOI 10.1016/S0747-7171(86)80027-X
- D. Simon, Équations dans les corps de nombres et discriminants minimaux, Ph.D. thesis, Université Bordeaux I, 1998.
- Nigel P. Smart, The algorithmic resolution of Diophantine equations, London Mathematical Society Student Texts, vol. 41, Cambridge University Press, Cambridge, 1998. MR 1689189, DOI 10.1017/CBO9781107359994
- Brigitte Vallée, Algorithmique dans les réseaux de petite dimension: un point de vue affine sur la recherche des minima, Séminaire de théorie des nombres, 1985–1986 (Talence, 1985–1986) Univ. Bordeaux I, Talence, 1986, pp. Exp. No. 13, 15 (French). MR 883094
- H.-J. Weber, Algorithmische Konstruktion hyperelliptischer Kurven mit kryptographischer Relevanz und einem Endomorphismenring echt größer als Z, Ph.D. thesis, Institut für Experimentelle Mathematik, University of Essen, 1997.
- André Weil, Number theory, Birkhäuser Boston, Inc., Boston, MA, 1984. An approach through history; From Hammurapi to Legendre. MR 734177, DOI 10.1007/978-0-8176-4571-7
- J. Wilson, Curves of genus 2 with real multiplication by a square root of 5, Ph.D. thesis, University of Oxford, 1998.
Bibliographic Information
- J. E. Cremona
- Affiliation: School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- MR Author ID: 52705
- ORCID: 0000-0002-7212-0162
- Email: John.Cremona@nottingham.ac.uk
- D. Rusin
- Affiliation: Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115
- Email: rusin@math.niu.edu
- Received by editor(s): September 5, 2001
- Published electronically: December 18, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1417-1441
- MSC (2000): Primary 11G30, 11D41
- DOI: https://doi.org/10.1090/S0025-5718-02-01480-1
- MathSciNet review: 1972744