Algebraic integers whose conjugates all lie in an ellipse
HTML articles powered by AMS MathViewer
- by Valérie Flammang and Georges Rhin;
- Math. Comp. 74 (2005), 2007-2015
- DOI: https://doi.org/10.1090/S0025-5718-05-01735-7
- Published electronically: March 8, 2005
- PDF | Request permission
Abstract:
We find all $15909$ algebraic integers $\boldsymbol {\alpha }$ whose conjugates all lie in an ellipse with two of them nonreal, while the others lie in the real interval $[-1,2]$. This problem has applications to finding certain subgroups of $SL(2,\mathbb {C})$. We use explicit auxiliary functions related to the generalized integer transfinite diameter of compact subsets of $\mathbb {C}$. This gives good bounds for the coefficients of the minimal polynomial of $\boldsymbol {\alpha }.$References
- Peter Borwein, Computational excursions in analysis and number theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 10, Springer-Verlag, New York, 2002. MR 1912495, DOI 10.1007/978-0-387-21652-2
- Peter Borwein and Tamás Erdélyi, The integer Chebyshev problem, Math. Comp. 65 (1996), no. 214, 661–681. MR 1333305, DOI 10.1090/S0025-5718-96-00702-8
- David W. Boyd, Reciprocal polynomials having small measure, Math. Comp. 35 (1980), no. 152, 1361–1377. MR 583514, DOI 10.1090/S0025-5718-1980-0583514-9
- David W. Boyd, Reciprocal polynomials having small measure. II, Math. Comp. 53 (1989), no. 187, 355–357, S1–S5. MR 968149, DOI 10.1090/S0025-5718-1989-0968149-6
- V. Flammang, G. Rhin, and C. J. Smyth, The integer transfinite diameter of intervals and totally real algebraic integers, J. Théor. Nombres Bordeaux 9 (1997), no. 1, 137–168 (English, with English and French summaries). MR 1469665
- V. Flammang, M. Grandcolas, and G. Rhin, Small Salem numbers, Number theory in progress, Vol. 1 (Zakopane-Kościelisko, 1997) de Gruyter, Berlin, 1999, pp. 165–168. MR 1689505
- V. Flammang, G. Rhin and J.M. Sac-Épée, Integer transfinite diameter and polynomials of small Mahler measure (in preparation).
- C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, GP-Pari version 2.0.12, 1998.
- Morris Marden, Geometry of polynomials, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, RI, 1966. MR 225972
- Michael J. Mossinghoff, Polynomials with small Mahler measure, Math. Comp. 67 (1998), no. 224, 1697–1705, S11–S14. MR 1604391, DOI 10.1090/S0025-5718-98-01006-0
- C. J. Smyth, The mean values of totally real algebraic integers, Math. Comp. 42 (1984), no. 166, 663–681. MR 736460, DOI 10.1090/S0025-5718-1984-0736460-5
- http://www.mmas.univ-metz.fr/ $\tilde {}$rhin.
- Qiang Wu, On the linear independence measure of logarithms of rational numbers, Math. Comp. 72 (2003), no. 242, 901–911. MR 1954974, DOI 10.1090/S0025-5718-02-01442-4
Bibliographic Information
- Valérie Flammang
- Affiliation: UMR CNRS 7122 Département de Mathématiques, UFR MIM, Université de Metz, Ile du Saulcy, 57045 Metz Cedex 01, France
- MR Author ID: 360354
- Email: flammang@poncelet.univ-metz.fr
- Georges Rhin
- Affiliation: UMR CNRS 7122 Département de Mathématiques, UFR MIM, Université de Metz, Ile du Saulcy, 57045 Metz Cedex 01, France
- Email: rhin@poncelet.univ-metz.fr
- Received by editor(s): December 19, 2003
- Received by editor(s) in revised form: May 13, 2004
- Published electronically: March 8, 2005
- © Copyright 2005 American Mathematical Society
- Journal: Math. Comp. 74 (2005), 2007-2015
- MSC (2000): Primary 11R04, 11Y40, 12D10
- DOI: https://doi.org/10.1090/S0025-5718-05-01735-7
- MathSciNet review: 2164108