Extended admissible functions and Gaussian limiting distributions
HTML articles powered by AMS MathViewer
- by Michael Drmota, Bernhard Gittenberger and Thomas Klausner;
- Math. Comp. 74 (2005), 1953-1966
- DOI: https://doi.org/10.1090/S0025-5718-05-01744-8
- Published electronically: March 14, 2005
Abstract:
We consider an extension of Hayman’s notion of admissibility to bivariate generating functions $f(z,u)$ that have the property that the coefficients $a_{nk}$ satisfy a central limit theorem. It is shown that these admissible functions have certain closure properties. Thus, there is a large class of functions for which it is possible to check this kind of admissibility automatically. This is realized with help of a MAPLE program that is also presented. We apply this concept to various combinatorial examples.References
- Edward A. Bender and L. Bruce Richmond, Central and local limit theorems applied to asymptotic enumeration. II. Multivariate generating functions, J. Combin. Theory Ser. A 34 (1983), no. 3, 255–265. MR 700034, DOI 10.1016/0097-3165(83)90062-6
- Edward A. Bender and L. Bruce Richmond, A generalisation of Canfield’s formula, J. Combin. Theory Ser. A 41 (1986), no. 1, 50–60. MR 826937, DOI 10.1016/0097-3165(86)90114-7
- Edward A. Bender and L. Bruce Richmond, Admissible functions and asymptotics for labelled structures by number of components, Electron. J. Combin. 3 (1996), no. 1, Research Paper 34, approx. 23. MR 1418482, DOI 10.37236/1258
- Michael Drmota, A bivariate asymptotic expansion of coefficients of powers of generating functions, European J. Combin. 15 (1994), no. 2, 139–152. MR 1261060, DOI 10.1006/eujc.1994.1016
- Philippe Flajolet and Michèle Soria, Gaussian limiting distributions for the number of components in combinatorial structures, J. Combin. Theory Ser. A 53 (1990), no. 2, 165–182. MR 1041444, DOI 10.1016/0097-3165(90)90056-3
- Philippe Flajolet and Michèle Soria, General combinatorial schemas: Gaussian limit distributions and exponential tails, Discrete Math. 114 (1993), no. 1-3, 159–180. Combinatorics and algorithms (Jerusalem, 1988). MR 1217750, DOI 10.1016/0012-365X(93)90364-Y
- Danièle Gardy, Some results on the asymptotic behaviour of coefficients of large powers of functions, Discrete Math. 139 (1995), no. 1-3, 189–217. Formal power series and algebraic combinatorics (Montreal, PQ, 1992). MR 1336840, DOI 10.1016/0012-365X(94)00133-4
- I. P. Goulden and D. M. Jackson, Combinatorial enumeration, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Inc., New York, 1983. With a foreword by Gian-Carlo Rota; A Wiley-Interscience Publication. MR 702512
- Zhicheng Gao and L. Bruce Richmond, Central and local limit theorems applied to asymptotic enumeration. IV. Multivariate generating functions, J. Comput. Appl. Math. 41 (1992), no. 1-2, 177–186. Asymptotic methods in analysis and combinatorics. MR 1181718, DOI 10.1016/0377-0427(92)90247-U
- L. H. Harper, Stirling behavior is asymptotically normal, Ann. Math. Statist. 38 (1967), 410–414. MR 211432, DOI 10.1214/aoms/1177698956
- W. K. Hayman, A generalisation of Stirling’s formula, J. Reine Angew. Math. 196 (1956), 67–95. MR 80749, DOI 10.1515/crll.1956.196.67
- Bernard Harris and Lowell Schoenfeld, Asymptotic expansions for the coefficients of analytic functions, Illinois J. Math. 12 (1968), 264–277. MR 224801
- Hsien-Kuei Hwang, Large deviations for combinatorial distributions. I. Central limit theorems, Ann. Appl. Probab. 6 (1996), no. 1, 297–319. MR 1389841, DOI 10.1214/aoap/1034968075
- Hsien-Kuei Hwang, On convergence rates in the central limit theorems for combinatorial structures, European J. Combin. 19 (1998), no. 3, 329–343. MR 1621021, DOI 10.1006/eujc.1997.0179
- Dan Richardson, Bruno Salvy, John Shackell, and Joris Van der Hoeven. Asymptotic expansions of exp-log functions. In Y. N. Lakshman, editor, ISSAC’96, pages 309–313. ACM Press, 1996. Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation. July 24–26, 1996. Zürich, Switzerland.
- B. Salvy. Examples of automatic asymptotic expansions. SIGSAM Bulletin, 25(2):4–17, April 1991.
- John Shackell, Inverses of Hardy $L$-functions, Bull. London Math. Soc. 25 (1993), no. 2, 150–156. MR 1204067, DOI 10.1112/blms/25.2.150
- Bruno Salvy and John Shackell, Symbolic asymptotics: multiseries of inverse functions, J. Symbolic Comput. 27 (1999), no. 6, 543–563. MR 1701094, DOI 10.1006/jsco.1999.0281
Bibliographic Information
- Michael Drmota
- Affiliation: Department of Discrete Mathematics and Geometry, Technische Universität Wien, Wiedner Hauptstraße 8-10/104, A-1040 Wien, Austria
- MR Author ID: 59890
- Email: drmota@dmg.tuwien.ac.at
- Bernhard Gittenberger
- Affiliation: Department of Discrete Mathematics and Geometry, Technische Universität Wien, Wiedner Hauptstraße 8-10/104, A-1040 Wien, Austria
- Email: gittenberger@dmg.tuwien.ac.at
- Thomas Klausner
- Affiliation: Department of Discrete Mathematics and Geometry, Technische Universität Wien, Wiedner Hauptstraße 8-10/104, A-1040 Wien, Austria
- Email: klausner@dmg.tuwien.ac.at
- Received by editor(s): August 19, 2003
- Received by editor(s) in revised form: June 22, 2004
- Published electronically: March 14, 2005
- Additional Notes: This work has been supported by the Austrian Science Foundation FWF, grant P16053-N05
- © Copyright 2005 by the authors. All rights reserved.
- Journal: Math. Comp. 74 (2005), 1953-1966
- MSC (2000): Primary 41A60; Secondary 68R05, 60F05, 05A16
- DOI: https://doi.org/10.1090/S0025-5718-05-01744-8
- MathSciNet review: 2164105