Polyharmonic splines on grids $\mathbb {Z}\times a\mathbb {Z}^{n}$ and their limits
HTML articles powered by AMS MathViewer
- by O. Kounchev and H. Render;
- Math. Comp. 74 (2005), 1831-1841
- DOI: https://doi.org/10.1090/S0025-5718-05-01753-9
- Published electronically: February 14, 2005
- PDF | Request permission
Abstract:
Radial Basis Functions (RBF) have found a wide area of applications. We consider the case of polyharmonic RBF (called sometimes polyharmonic splines) where the data are on special grids of the form $\mathbb {Z}\times a\mathbb {Z}^{n}$ having practical importance. The main purpose of the paper is to consider the behavior of the polyharmonic interpolation splines $I_{a}$ on such grids for the limiting process $a\rightarrow 0,$ $a>0.$ For a large class of data functions defined on $\mathbb {R}\times \mathbb {R}^{n}$ it turns out that there exists a limit function $I.$ This limit function is shown to be a polyspline of order $p$ on strips. By the theory of polysplines we know that the function $I$ is smooth up to order $2\left ( p-1\right )$ everywhere (in particular, they are smooth on the hyperplanes $\left \{ j\right \} \times \mathbb {R}^{n}$, which includes existence of the normal derivatives up to order $2\left ( p-1\right ))$ while the RBF interpolants $I_{a}$ are smooth only up to the order $2p-n-1.$ The last fact has important consequences for the data smoothing practice.References
- Aurelian Bejancu, Ognyan Iv. Kounchev, and Hermann Render, Cardinal interpolation with biharmonic polysplines on strips, Curve and surface fitting (Saint-Malo, 2002) Mod. Methods Math., Nashboro Press, Brentwood, TN, 2003, pp. 41–58. MR 2042434
- Bejancu, A., Kounchev, O., Render, H., The cardinal interpolation on hyperplanes with polysplines, submitted.
- M. D. Buhmann, Multivariate cardinal interpolation with radial-basis functions, Constr. Approx. 6 (1990), no. 3, 225–255. MR 1054754, DOI 10.1007/BF01890410
- Martin D. Buhmann and Charles A. Micchelli, On radial basis approximation on periodic grids, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 2, 317–334. MR 1171168, DOI 10.1017/S0305004100071000
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- K. Jetter, Multivariate approximation from the cardinal interpolation point of view, Approximation theory VII (Austin, TX, 1992) Academic Press, Boston, MA, 1993, pp. 131–161. MR 1212572
- Ognyan Kounchev, Multivariate polysplines: applications to numerical and wavelet analysis, Academic Press, Inc., San Diego, CA, 2001. MR 1852149, DOI 10.1198/tech.2001.s63
- Kounchev, O., Render, H., Multivariate cardinal splines via spherical harmonics, submitted
- Ognyan Kounchev and Hermann Render, Wavelet analysis of cardinal $L$-splines and construction of multivariate prewavelets, Approximation theory, X (St. Louis, MO, 2001) Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, pp. 333–353. MR 1924893
- Ognyan Kounchev and Hermann Render, The approximation order of polysplines, Proc. Amer. Math. Soc. 132 (2004), no. 2, 455–461. MR 2022369, DOI 10.1090/S0002-9939-03-07069-2
- Kounchev, O., Render, H., Rate of convergence of polyharmonic splines to polysplines. Submitted.
- Kounchev, O., Wilson, M., Application of PDE methods to visualization of heart data. In: Michael J. Wilson, Ralph R. Martin (Eds.): Mathematics of Surfaces, Lecture Notes in Computer Science 2768, Springer-Verlag, 2003; pp. 377-391.
- Yongping Liu and Guozhen Lu, Simultaneous approximations for functions in Sobolev spaces by derivatives of polyharmonic cardinal splines, J. Approx. Theory 101 (1999), no. 1, 49–62. MR 1724025, DOI 10.1006/jath.1999.3360
- W. R. Madych and S. A. Nelson, Polyharmonic cardinal splines, J. Approx. Theory 60 (1990), no. 2, 141–156. MR 1033167, DOI 10.1016/0021-9045(90)90079-6
- W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions. II, Math. Comp. 54 (1990), no. 189, 211–230. MR 993931, DOI 10.1090/S0025-5718-1990-0993931-7
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971. MR 304972
Bibliographic Information
- O. Kounchev
- Affiliation: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev St. 8, 1113 Sofia, Bulgaria
- Email: kounchev@math.bas.bg; kounchev@math.uni-duisburg.de
- H. Render
- Affiliation: Departamento de Matemáticas y Computatión, Universidad de la Rioja, Edificio Vives, Luis de Ulloa, s/n 26004, Logroño, Spain
- MR Author ID: 268351
- Email: render@math.uni-duisburg.de; herender@dmc.unirioja.es
- Received by editor(s): August 14, 2003
- Received by editor(s) in revised form: June 25, 2004
- Published electronically: February 14, 2005
- © Copyright 2005 American Mathematical Society
- Journal: Math. Comp. 74 (2005), 1831-1841
- MSC (2000): Primary 41A05, 65D10; Secondary 41A15
- DOI: https://doi.org/10.1090/S0025-5718-05-01753-9
- MathSciNet review: 2164099