Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence
HTML articles powered by AMS MathViewer
- by Erik Burman and Alexandre Ern;
- Math. Comp. 74 (2005), 1637-1652
- DOI: https://doi.org/10.1090/S0025-5718-05-01761-8
- Published electronically: June 7, 2005
- PDF | Request permission
Abstract:
We analyze a nonlinear shock-capturing scheme for $H^1$-conform- ing, piecewise-affine finite element approximations of linear elliptic problems. The meshes are assumed to satisfy two standard conditions: a local quasi-uniformity property and the Xu–Zikatanov condition ensuring that the stiffness matrix associated with the Poisson equation is an $M$-matrix. A discrete maximum principle is rigorously established in any space dimension for convection-diffusion-reaction problems. We prove that the shock-capturing finite element solution converges to that without shock-capturing if the cell Péclet numbers are sufficiently small. Moreover, in the diffusion-dominated regime, the difference between the two finite element solutions super-converges with respect to the actual approximation error. Numerical experiments on test problems with stiff layers confirm the sharpness of the a priori error estimates.References
- James H. Bramble, Raytcho D. Lazarov, and Joseph E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order systems, Math. Comp. 66 (1997), no. 219, 935–955. MR 1415797, DOI 10.1090/S0025-5718-97-00848-X
- Alexander N. Brooks and Thomas J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1982), no. 1-3, 199–259. FENOMECH ”81, Part I (Stuttgart, 1981). MR 679322, DOI 10.1016/0045-7825(82)90071-8
- Erik Burman and Alexandre Ern, Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection–diffusion-reaction equation, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 35, 3833–3855. MR 1912655, DOI 10.1016/S0045-7825(02)00318-3
- Erik Burman and Alexandre Ern, Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes, C. R. Math. Acad. Sci. Paris 338 (2004), no. 8, 641–646 (English, with English and French summaries). MR 2056474, DOI 10.1016/j.crma.2004.02.010
- Erik Burman and Peter Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 15-16, 1437–1453. MR 2068903, DOI 10.1016/j.cma.2003.12.032
- P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17–31. MR 375802, DOI 10.1016/0045-7825(73)90019-4
- Ramon Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. Mech. Engrg. 110 (1993), no. 3-4, 325–342. MR 1256324, DOI 10.1016/0045-7825(93)90213-H
- Andrei Drăgănescu, Todd F. Dupont, and L. Ridgway Scott, Failure of the discrete maximum principle for an elliptic finite element problem, Math. Comp. 74 (2005), no. 249, 1–23. MR 2085400, DOI 10.1090/S0025-5718-04-01651-5
- Alexandre Ern and Jean-Luc Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004. MR 2050138, DOI 10.1007/978-1-4757-4355-5
- Jean-Luc Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1293–1316. MR 1736900, DOI 10.1051/m2an:1999145
- T. J. R. Hughes, L. P. Franca, and M. Mallet, A new finite element formulation for computational fluid dynamics. I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Engrg. 54 (1986), no. 2, 223–234. MR 831553, DOI 10.1016/0045-7825(86)90127-1
- S. Idelsohn, N. Nigro, M. Storti, and G. Buscaglia, A Petrov-Galerkin formulation for advection-reaction-diffusion problems, Comput. Methods Appl. Mech. Engrg. 136 (1996), no. 1-2, 27–46. MR 1409694, DOI 10.1016/0045-7825(96)01008-0
- Bo-nan Jiang, The least-squares finite element method, Scientific Computation, Springer-Verlag, Berlin, 1998. Theory and applications in computational fluid dynamics and electromagnetics. MR 1639101, DOI 10.1007/978-3-662-03740-9
- Claes Johnson, Uno Nävert, and Juhani Pitkäranta, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 45 (1984), no. 1-3, 285–312. MR 759811, DOI 10.1016/0045-7825(84)90158-0
- C. Johnson, A. H. Schatz, and L. B. Wahlbin, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp. 49 (1987), no. 179, 25–38. MR 890252, DOI 10.1090/S0025-5718-1987-0890252-8
- T. Knopp, G. Lube, and G. Rapin, Stabilized finite element methods with shock capturing for advection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 27-28, 2997–3013. MR 1903196, DOI 10.1016/S0045-7825(02)00222-0
- Sergey Korotov, Michal Křížek, and Pekka Neittaanmäki, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math. Comp. 70 (2001), no. 233, 107–119. MR 1803125, DOI 10.1090/S0025-5718-00-01270-9
- Yin-Tzer Shih and Howard C. Elman, Modified streamline diffusion schemes for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 174 (1999), no. 1-2, 137–151. MR 1686684, DOI 10.1016/S0045-7825(98)00283-7
- T.E. Tezduyar and Y.J. Park. Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Engrg., 59:307–325, 1986.
- Jinchao Xu and Ludmil Zikatanov, A monotone finite element scheme for convection-diffusion equations, Math. Comp. 68 (1999), no. 228, 1429–1446. MR 1654022, DOI 10.1090/S0025-5718-99-01148-5
Bibliographic Information
- Erik Burman
- Affiliation: Ecole Polytechnique Federale de Lausanne, Institute of Analysis and Scientific Computing, 1015 Lausanne, Switzerland
- MR Author ID: 602430
- Email: Erik.Burman@epfl.ch
- Alexandre Ern
- Affiliation: CERMICS, Ecole nationale des ponts et chaussées, 6 et 8, avenue B. Pascal, 77455 Marne la Vallée cedex 2, France
- MR Author ID: 349433
- Email: ern@cermics.enpc.fr
- Received by editor(s): February 18, 2003
- Received by editor(s) in revised form: August 16, 2004
- Published electronically: June 7, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 74 (2005), 1637-1652
- MSC (2000): Primary 65N12, 65N30, 76R99
- DOI: https://doi.org/10.1090/S0025-5718-05-01761-8
- MathSciNet review: 2164090