## Computation of capacity

HTML articles powered by AMS MathViewer

- by Thomas Ransford and Jérémie Rostand PDF
- Math. Comp.
**76**(2007), 1499-1520 Request permission

## Abstract:

This article introduces a method for computing upper and lower bounds for the logarithmic capacity of a compact plane set. If the set has the Hölder continuity property, then these bounds converge to the value of the capacity. A number of examples are discussed in detail, including the Cantor middle-third set, for which we estimate $c(E)\approx 0.220949102189507$.## References

- Line Baribeau, Dominique Brunet, Thomas Ransford, and Jérémie Rostand,
*Iterated function systems, capacity and Green’s functions*, Comput. Methods Funct. Theory**4**(2004), no. 1, 47–58. MR**2081665**, DOI 10.1007/BF03321055 - Jarle Berntsen, Terje O. Espelid, and Alan Genz,
*Algorithm 698: DCUHRE: an adaptive multidimensional integration routine for a vector of integrals*, ACM Trans. Math. Software**17**(1991), no. 4, 452–456. MR**1140035**, DOI 10.1145/210232.210234 - David G. Cantor,
*On an extension of the definition of transfinite diameter and some applications*, J. Reine Angew. Math.**316**(1980), 160–207. MR**581330**, DOI 10.1515/crll.1980.316.160 - Lennart Carleson and Theodore W. Gamelin,
*Complex dynamics*, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR**1230383**, DOI 10.1007/978-1-4612-4364-9 - Lennart Carleson and Vilmos Totik,
*Hölder continuity of Green’s functions*, Acta Sci. Math. (Szeged)**70**(2004), no. 3-4, 557–608. MR**2107529** - T. A. Driscoll,
*Algorithm 756: A MATLAB toolbox for Schwarz-Christoffel mapping*, ACM Trans. Math. Software,**22**(1996), 168–186; http://www.math.udel.edu/ driscoll/SC. - Mark Embree and Lloyd N. Trefethen,
*Green’s functions for multiply connected domains via conformal mapping*, SIAM Rev.**41**(1999), no. 4, 745–761. MR**1722999**, DOI 10.1137/S0036144598349277 - Kenneth Falconer,
*Fractal geometry*, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003. Mathematical foundations and applications. MR**2118797**, DOI 10.1002/0470013850 - Sanjay Mehrotra,
*On the implementation of a primal-dual interior point method*, SIAM J. Optim.**2**(1992), no. 4, 575–601. MR**1186163**, DOI 10.1137/0802028 - Christian Pommerenke,
*Univalent functions*, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR**0507768** - Ch. Pommerenke,
*Uniformly perfect sets and the Poincaré metric*, Arch. Math. (Basel)**32**(1979), no. 2, 192–199. MR**534933**, DOI 10.1007/BF01238490 - Ch. Pommerenke,
*Boundary behaviour of conformal maps*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR**1217706**, DOI 10.1007/978-3-662-02770-7 - Thomas Ransford,
*Potential theory in the complex plane*, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR**1334766**, DOI 10.1017/CBO9780511623776 - Jérémie Rostand,
*Computing logarithmic capacity with linear programming*, Experiment. Math.**6**(1997), no. 3, 221–238. MR**1481591** - J. L. Walsh,
*Interpolation and approximation by rational functions in the complex domain*, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR**0218587** - Jianhua Wang,
*The theory of games*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York; The Clarendon Press, Oxford University Press, New York, 1988. Translated from the Chinese; Oxford Science Publications. MR**969605** - Harold Widom,
*Extremal polynomials associated with a system of curves in the complex plane*, Advances in Math.**3**(1969), 127–232. MR**239059**, DOI 10.1016/0001-8708(69)90005-X

## Additional Information

**Thomas Ransford**- Affiliation: Département de mathématiques et de statistique, Université Laval, Québec (QC), Canada G1K 7P4
- MR Author ID: 204108
- Email: ransford@mat.ulaval.ca
**Jérémie Rostand**- Affiliation: Département de mathématiques et de statistique, Université Laval, Québec (QC), Canada G1K 7P4
- Email: jrostand@mat.ulaval.ca
- Received by editor(s): January 18, 2005
- Received by editor(s) in revised form: July 6, 2005
- Published electronically: January 24, 2007
- Additional Notes: The first author was supported by grants from NSERC and the Canada Research Chairs program

The second author was supported by a grant from NSERC - © Copyright 2007 American Mathematical Society
- Journal: Math. Comp.
**76**(2007), 1499-1520 - MSC (2000): Primary 65E05; Secondary 31A15, 90C05
- DOI: https://doi.org/10.1090/S0025-5718-07-01941-2
- MathSciNet review: 2299786