Identification of small inhomogeneities: Asymptotic factorization
HTML articles powered by AMS MathViewer
- by Habib Ammari, Roland Griesmaier and Martin Hanke PDF
- Math. Comp. 76 (2007), 1425-1448 Request permission
Abstract:
We consider the boundary value problem of calculating the electrostatic potential for a homogeneous conductor containing finitely many small insulating inclusions. We give a new proof of the asymptotic expansion of the electrostatic potential in terms of the background potential, the location of the inhomogeneities and their geometry, as the size of the inhomogeneities tends to zero. Such asymptotic expansions have already been used to design direct (i.e. noniterative) reconstruction algorithms for the determination of the location of the small inclusions from electrostatic measurements on the boundary, e.g. MUSIC-type methods. Our derivation of the asymptotic formulas is based on integral equation methods. It demonstrates the strong relation between factorization methods and MUSIC-type methods for the solution of this inverse problem.References
- Habib Ammari, Ekaterina Iakovleva, and Dominique Lesselier, Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency, SIAM J. Sci. Comput. 27 (2005), no. 1, 130–158. MR 2201178, DOI 10.1137/040612518
- Habib Ammari, Ekaterina Iakovleva, and Dominique Lesselier, A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency, Multiscale Model. Simul. 3 (2005), no. 3, 597–628. MR 2136165, DOI 10.1137/040610854
- H. Ammari, E. Iakovleva, D. Lesselier, and G. Perrusson, MUSIC-type electromagnetic imaging of a collection of small three-dimensional bounded inclusions, SIAM J. Sci. Comput., to appear.
- Habib Ammari, Ekaterina Iakovleva, and Shari Moskow, Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency, SIAM J. Math. Anal. 34 (2003), no. 4, 882–900. MR 1969606, DOI 10.1137/S0036141001392785
- Habib Ammari and Hyeonbae Kang, High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter, SIAM J. Math. Anal. 34 (2003), no. 5, 1152–1166. MR 2001663, DOI 10.1137/S0036141001399234
- Habib Ammari and Hyeonbae Kang, Reconstruction of small inhomogeneities from boundary measurements, Lecture Notes in Mathematics, vol. 1846, Springer-Verlag, Berlin, 2004. MR 2168949, DOI 10.1007/b98245
- Habib Ammari and Hyeonbae Kang, Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities, J. Math. Anal. Appl. 296 (2004), no. 1, 190–208. MR 2070502, DOI 10.1016/j.jmaa.2004.04.003
- Habib Ammari and Abdessatar Khelifi, Electromagnetic scattering by small dielectric inhomogeneities, J. Math. Pures Appl. (9) 82 (2003), no. 7, 749–842 (English, with English and French summaries). MR 2005296, DOI 10.1016/S0021-7824(03)00033-3
- Habib Ammari, Shari Moskow, and Michael S. Vogelius, Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume, ESAIM Control Optim. Calc. Var. 9 (2003), 49–66. MR 1957090, DOI 10.1051/cocv:2002071
- Habib Ammari, Michael S. Vogelius, and Darko Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. II. The full Maxwell equations, J. Math. Pures Appl. (9) 80 (2001), no. 8, 769–814. MR 1860816, DOI 10.1016/S0021-7824(01)01217-X
- Martin Brühl, Explicit characterization of inclusions in electrical impedance tomography, SIAM J. Math. Anal. 32 (2001), no. 6, 1327–1341. MR 1856252, DOI 10.1137/S003614100036656X
- Martin Brühl, Martin Hanke, and Michael S. Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities, Numer. Math. 93 (2003), no. 4, 635–654. MR 1961882, DOI 10.1007/s002110200409
- Yves Capdeboscq and Michael S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements, M2AN Math. Model. Numer. Anal. 37 (2003), no. 2, 227–240. MR 1991198, DOI 10.1051/m2an:2003024
- Yves Capdeboscq and Michael S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, M2AN Math. Model. Numer. Anal. 37 (2003), no. 1, 159–173. MR 1972656, DOI 10.1051/m2an:2003014
- D. J. Cedio-Fengya, S. Moskow, and M. S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems 14 (1998), no. 3, 553–595. MR 1629995, DOI 10.1088/0266-5611/14/3/011
- Margaret Cheney, The linear sampling method and the MUSIC algorithm, Inverse Problems 17 (2001), no. 4, 591–595. Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000). MR 1861470, DOI 10.1088/0266-5611/17/4/301
- David Colton, Joe Coyle, and Peter Monk, Recent developments in inverse acoustic scattering theory, SIAM Rev. 42 (2000), no. 3, 369–414. MR 1786932, DOI 10.1137/S0036144500367337
- David Colton, Klaus Giebermann, and Peter Monk, A regularized sampling method for solving three-dimensional inverse scattering problems, SIAM J. Sci. Comput. 21 (2000), no. 6, 2316–2330. MR 1762044, DOI 10.1137/S1064827598340159
- David Colton, Houssem Haddar, and Peter Monk, The linear sampling method for solving the electromagnetic inverse scattering problem, SIAM J. Sci. Comput. 24 (2002), no. 3, 719–731. MR 1950509, DOI 10.1137/S1064827501390467
- David Colton and Andreas Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems 12 (1996), no. 4, 383–393. MR 1402098, DOI 10.1088/0266-5611/12/4/003
- Martin Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal. 19 (1988), no. 3, 613–626. MR 937473, DOI 10.1137/0519043
- Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 2, Springer-Verlag, Berlin, 1988. Functional and variational methods; With the collaboration of Michel Artola, Marc Authier, Philippe Bénilan, Michel Cessenat, Jean Michel Combes, Hélène Lanchon, Bertrand Mercier, Claude Wild and Claude Zuily; Translated from the French by Ian N. Sneddon. MR 969367, DOI 10.1007/978-3-642-61566-5
- A. J. Devaney, Super-resolution processing of multi-static data using time reversal and MUSIC, preprint.
- Avner Friedman and Michael Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Rational Mech. Anal. 105 (1989), no. 4, 299–326. MR 973245, DOI 10.1007/BF00281494
- Bastian Gebauer, The factorization method for real elliptic problems, Z. Anal. Anwend. 25 (2006), no. 1, 81–102. MR 2216883, DOI 10.4171/ZAA/1279
- Bastian Gebauer, Martin Hanke, Andreas Kirsch, Wagner Muniz, and Christoph Schneider, A sampling method for detecting buried objects using electromagnetic scattering, Inverse Problems 21 (2005), no. 6, 2035–2050. MR 2183666, DOI 10.1088/0266-5611/21/6/015
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Martin Hanke and Martin Brühl, Recent progress in electrical impedance tomography, Inverse Problems 19 (2003), no. 6, S65–S90. Special section on imaging. MR 2036522, DOI 10.1088/0266-5611/19/6/055
- Andreas Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems 14 (1998), no. 6, 1489–1512. MR 1662460, DOI 10.1088/0266-5611/14/6/009
- Andreas Kirsch, The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems 18 (2002), no. 4, 1025–1040. MR 1929280, DOI 10.1088/0266-5611/18/4/306
- Andreas Kirsch, The factorization method for Maxwell’s equations, Inverse Problems 20 (2004), no. 6, S117–S134. MR 2107232, DOI 10.1088/0266-5611/20/6/S08
- Andreas Kirsch, The factorization method for a class of inverse elliptic problems, Math. Nachr. 278 (2005), no. 3, 258–277. MR 2110531, DOI 10.1002/mana.200310239
- Rainer Kress, Linear integral equations, Applied Mathematical Sciences, vol. 82, Springer-Verlag, Berlin, 1989. MR 1007594, DOI 10.1007/978-3-642-97146-4
- R. Kress, A factorization method for an inverse Neumann problem for harmonic vector fields, Georgian Math. J. 10 (2003), no. 3, 549–560. Dedicated to the 100th birthday anniversary of Professor Victor Kupradze. MR 2023274
- William McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. MR 1742312
- Jean-Claude Nédélec, Acoustic and electromagnetic equations, Applied Mathematical Sciences, vol. 144, Springer-Verlag, New York, 2001. Integral representations for harmonic problems. MR 1822275, DOI 10.1007/978-1-4757-4393-7
- Michael S. Vogelius and Darko Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, M2AN Math. Model. Numer. Anal. 34 (2000), no. 4, 723–748. MR 1784483, DOI 10.1051/m2an:2000101
Additional Information
- Habib Ammari
- Affiliation: Centre de Mathématiques Appliquées, CNRS UMR 7641 and Ecole Polytechnique, 91128 Palaiseau Cedex, France
- MR Author ID: 353050
- Email: ammari@cmapx.polytechnique.fr
- Roland Griesmaier
- Affiliation: Institut für Mathematik, Johannes Gutenberg-Universität, 55099 Mainz, Germany
- Email: griesmaier@math.uni-mainz.de
- Martin Hanke
- Affiliation: Institut für Mathematik, Johannes Gutenberg-Universität, 55099 Mainz, Germany
- Email: hanke@math.uni-mainz.de
- Received by editor(s): January 7, 2006
- Received by editor(s) in revised form: May 15, 2006
- Published electronically: February 19, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 1425-1448
- MSC (2000): Primary 35R30, 35C20
- DOI: https://doi.org/10.1090/S0025-5718-07-01946-1
- MathSciNet review: 2299781