## On generalized averaged Gaussian formulas

HTML articles powered by AMS MathViewer

- by Miodrag M. Spalević PDF
- Math. Comp.
**76**(2007), 1483-1492 Request permission

Erratum: Math. Comp.

**47**(1986), 767.

## Abstract:

We present a simple numerical method for constructing the optimal (generalized) averaged Gaussian quadrature formulas which are the optimal stratified extensions of Gauss quadrature formulas. These extensions exist in many cases in which real positive Kronrod formulas do not exist. For the Jacobi weight functions $w(x)\equiv w^{(\alpha ,\beta )}(x)=(1-x)^\alpha (1+x)^\beta$ ($\alpha ,\beta >-1$) we give a necessary and sufficient condition on the parameters $\alpha$ and $\beta$ such that the optimal averaged Gaussian quadrature formulas are internal.## References

- Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR**0167642** - D. Calvetti, G. H. Golub, W. B. Gragg, and L. Reichel,
*Computation of Gauss-Kronrod quadrature rules*, Math. Comp.**69**(2000), no. 231, 1035–1052. MR**1677474**, DOI 10.1090/S0025-5718-00-01174-1 - Daniela Calvetti and Lothar Reichel,
*Symmetric Gauss-Lobatto and modified anti-Gauss rules*, BIT**43**(2003), no. 3, 541–554. MR**2026714**, DOI 10.1023/B:BITN.0000007053.03860.c0 - Sven Ehrich,
*On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas*, Proceedings of the 9th International Congress on Computational and Applied Mathematics (Leuven, 2000), 2002, pp. 291–299. MR**1934445**, DOI 10.1016/S0377-0427(01)00407-1 - Walter Gautschi,
*On generating orthogonal polynomials*, SIAM J. Sci. Statist. Comput.**3**(1982), no. 3, 289–317. MR**667829**, DOI 10.1137/0903018 - Walter Gautschi,
*Orthogonal polynomials: computation and approximation*, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004. Oxford Science Publications. MR**2061539** - Walter Gautschi,
*A historical note on Gauss-Kronrod quadrature*, Numer. Math.**100**(2005), no. 3, 483–484. MR**2195449**, DOI 10.1007/s00211-005-0592-7 - Gene H. Golub and John H. Welsch,
*Calculation of Gauss quadrature rules*, Math. Comp. 23 (1969), 221-230; addendum, ibid.**23**(1969), no. 106, loose microfiche suppl, A1–A10. MR**0245201**, DOI 10.1090/S0025-5718-69-99647-1 - D. K. Kahaner and G. Monegato,
*Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights*, Z. Angew. Math. Phys.**29**(1978), no. 6, 983–986 (English, with German summary). MR**523866**, DOI 10.1007/BF01590820 - Dirk P. Laurie,
*Stratified sequences of nested quadrature formulas*, Quaestiones Math.**15**(1992), no. 3, 365–384. 17th South African Symposium on Numerical Mathematics (Umhlanga, 1991). MR**1192847** - Dirk P. Laurie,
*Anti-Gaussian quadrature formulas*, Math. Comp.**65**(1996), no. 214, 739–747. MR**1333318**, DOI 10.1090/S0025-5718-96-00713-2 - Dirk P. Laurie,
*Calculation of Gauss-Kronrod quadrature rules*, Math. Comp.**66**(1997), no. 219, 1133–1145. MR**1422788**, DOI 10.1090/S0025-5718-97-00861-2 - Giovanni Monegato,
*An overview of the computational aspects of Kronrod quadrature rules*, Numer. Algorithms**26**(2001), no. 2, 173–196. MR**1829797**, DOI 10.1023/A:1016640617732 - T. N. L. Patterson,
*Stratified nested and related quadrature rules*, J. Comput. Appl. Math.**112**(1999), no. 1-2, 243–251. Numerical evaluation of integrals. MR**1728463**, DOI 10.1016/S0377-0427(99)00224-1 - Franz Peherstorfer,
*Characterization of positive quadrature formulas*, SIAM J. Math. Anal.**12**(1981), no. 6, 935–942. MR**635246**, DOI 10.1137/0512079 - Franz Peherstorfer,
*Characterization of quadrature formula. II*, SIAM J. Math. Anal.**15**(1984), no. 5, 1021–1030. MR**755862**, DOI 10.1137/0515079 - Franz Peherstorfer,
*On positive quadrature formulas*, Numerical integration, IV (Oberwolfach, 1992) Internat. Ser. Numer. Math., vol. 112, Birkhäuser, Basel, 1993, pp. 297–313. MR**1248412** - Franz Peherstorfer and Knut Petras,
*Ultraspherical Gauss-Kronrod quadrature is not possible for $\lambda >3$*, SIAM J. Numer. Anal.**37**(2000), no. 3, 927–948. MR**1749243**, DOI 10.1137/S0036142998327744 - Franz Peherstorfer and Knut Petras,
*Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi weight functions*, Numer. Math.**95**(2003), no. 4, 689–706. MR**2013124**, DOI 10.1007/s00211-002-0412-2

## Additional Information

**Miodrag M. Spalević**- Affiliation: Department of Mathematics and Informatics, University of Kragujevac, Faculty of Science, P.O. Box 60, 34000 Kragujevac, Serbia
- MR Author ID: 600543
- Email: spale@kg.ac.yu
- Received by editor(s): August 9, 2005
- Received by editor(s) in revised form: May 4, 2006
- Published electronically: March 8, 2007
- Additional Notes: The author was supported in part by the Serbian Ministry of Science and Environmental Protection (Project #144005A: “Approximation of linear operators”).
- © Copyright 2007 American Mathematical Society
- Journal: Math. Comp.
**76**(2007), 1483-1492 - MSC (2000): Primary 65D30, 65D32; Secondary 33A65
- DOI: https://doi.org/10.1090/S0025-5718-07-01975-8
- MathSciNet review: 2299784