Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition
HTML articles powered by AMS MathViewer
- by Xiaobing Feng and Ohannes A. Karakashian PDF
- Math. Comp. 76 (2007), 1093-1117 Request permission
Abstract:
Fully discrete discontinuous Galerkin methods with variable mesh- es in time are developed for the fourth order Cahn-Hilliard equation arising from phase transition in materials science. The methods are formulated and analyzed in both two and three dimensions, and are proved to give optimal order error bounds. This coupled with the flexibility of the methods demonstrates that the proposed discontinuous Galerkin methods indeed provide an efficient and viable alternative to the mixed finite element methods and nonconforming (plate) finite element methods for solving fourth order partial differential equations.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Nicholas D. Alikakos, Peter W. Bates, and Xinfu Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rational Mech. Anal. 128 (1994), no. 2, 165–205. MR 1308851, DOI 10.1007/BF00375025
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- D. Arnold, F. Brezzi, B. Cockburn, and D. Marini, Discontinuous Galerkin methods for elliptic problems. Proceedings of the International Symposium on the discontinuous Galerkin method (B. Cockburn, G.E. Karniadakis, C.-W. Shu Eds.), Springer Lecture Notes in Computational Science and Engineering, vol. 11, 2000, pp. 89–101.
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- Garth A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), no. 137, 45–59. MR 431742, DOI 10.1090/S0025-5718-1977-0431742-5
- Garth A. Baker, Wadi N. Jureidini, and Ohannes A. Karakashian, Piecewise solenoidal vector fields and the Stokes problem, SIAM J. Numer. Anal. 27 (1990), no. 6, 1466–1485. MR 1080332, DOI 10.1137/0727085
- James H. Bramble, Todd Dupont, and Vidar Thomée, Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections, Math. Comp. 26 (1972), 869–879. MR 343657, DOI 10.1090/S0025-5718-1972-0343657-7
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., (28), 1958, pp. 258–267.
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu (eds.), Discontinuous Galerkin methods, Lecture Notes in Computational Science and Engineering, vol. 11, Springer-Verlag, Berlin, 2000. Theory, computation and applications; Papers from the 1st International Symposium held in Newport, RI, May 24–26, 1999. MR 1842160, DOI 10.1007/978-3-642-59721-3
- Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440–2463. MR 1655854, DOI 10.1137/S0036142997316712
- Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575–626. MR 277126, DOI 10.1137/0707048
- Jim Douglas Jr. and Todd Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975) Lecture Notes in Phys., Vol. 58, Springer, Berlin, 1976, pp. 207–216. MR 0440955
- Qiang Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal. 28 (1991), no. 5, 1310–1322. MR 1119272, DOI 10.1137/0728069
- Charles M. Elliott and Donald A. French, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal. 26 (1989), no. 4, 884–903. MR 1005515, DOI 10.1137/0726049
- C. M. Elliott, D. A. French, and F. A. Milner, A second order splitting method for the Cahn-Hilliard equation, Numer. Math. 54 (1989), no. 5, 575–590. MR 978609, DOI 10.1007/BF01396363
- Charles M. Elliott and Zheng Songmu, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal. 96 (1986), no. 4, 339–357. MR 855754, DOI 10.1007/BF00251803
- Xiaobing Feng, Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J. Numer. Anal. 44 (2006), no. 3, 1049–1072. MR 2231855, DOI 10.1137/050638333
- Xiaobing Feng and Ohannes A. Karakashian, Two-level non-overlapping Schwarz preconditioners for a discontinuous Galerkin approximation of the biharmonic equation, J. Sci. Comput. 22/23 (2005), 289–314. MR 2142199, DOI 10.1007/s10915-004-4141-9
- Xiaobing Feng and Andreas Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation, Numer. Math. 99 (2004), no. 1, 47–84. MR 2101784, DOI 10.1007/s00211-004-0546-5
- Xiaobing Feng and Andreas Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem, Interfaces Free Bound. 7 (2005), no. 1, 1–28. MR 2126141, DOI 10.4171/IFB/111
- X. Feng and H. Wu, A posteriori error estimates and an adaptive finite element algorithm for the Cahn-Hilliard equation and the Hele-Shaw flow, M2AN Math. Model. Numer. Anal. (submitted).
- Donald A. French and Søren Jensen, Long-time behaviour of arbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems, IMA J. Numer. Anal. 14 (1994), no. 3, 421–442. MR 1283945, DOI 10.1093/imanum/14.3.421
- P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. MR 1173209
- Paul Houston, Christoph Schwab, and Endre Süli, Discontinuous $hp$-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal. 39 (2002), no. 6, 2133–2163. MR 1897953, DOI 10.1137/S0036142900374111
- David Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys. 155 (1999), no. 1, 96–127. MR 1716497, DOI 10.1006/jcph.1999.6332
- Ohannes A. Karakashian and Wadi N. Jureidini, A nonconforming finite element method for the stationary Navier-Stokes equations, SIAM J. Numer. Anal. 35 (1998), no. 1, 93–120. MR 1618436, DOI 10.1137/S0036142996297199
- Ohannes Karakashian and Charalambos Makridakis, Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations, Math. Comp. 74 (2005), no. 249, 85–102. MR 2085403, DOI 10.1090/S0025-5718-04-01654-0
- Chun Liu and Jie Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D 179 (2003), no. 3-4, 211–228. MR 1984386, DOI 10.1016/S0167-2789(03)00030-7
- G. B. McFadden, Phase-field models of solidification, Recent advances in numerical methods for partial differential equations and applications (Knoxville, TN, 2001) Contemp. Math., vol. 306, Amer. Math. Soc., Providence, RI, 2002, pp. 107–145. MR 1940624, DOI 10.1090/conm/306/05251
- Igor Mozolevski and Endre Süli, A priori error analysis for the $hp$-version of the discontinuous Galerkin finite element method for the biharmonic equation, Comput. Methods Appl. Math. 3 (2003), no. 4, 596–607. MR 2048235, DOI 10.2478/cmam-2003-0037
- J. Tinsley Oden and Carlos Erik Baumann, A conservative DGM for convection-diffusion and Navier-Stokes problems, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 179–196. MR 1842173, DOI 10.1007/978-3-642-59721-3_{1}3
- Mary Fanett Wheeler, A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759. MR 351124, DOI 10.1137/0710062
- Mary Fanett Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978), no. 1, 152–161. MR 471383, DOI 10.1137/0715010
Additional Information
- Xiaobing Feng
- Affiliation: Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996
- MR Author ID: 351561
- Email: xfeng@math.utk.edu
- Ohannes A. Karakashian
- Affiliation: Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996
- Email: ohannes@math.utk.edu
- Received by editor(s): February 1, 2006
- Received by editor(s) in revised form: August 31, 2006
- Published electronically: March 9, 2007
- Additional Notes: The work of the first author was partially supported by the NSF grant DMS-0410266
The work of the second author was partially supported by the NSF grant DMS-0411448 - © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 1093-1117
- MSC (2000): Primary 65M15, 65M60, 74N20
- DOI: https://doi.org/10.1090/S0025-5718-07-01985-0
- MathSciNet review: 2299767