Asymptotically fast group operations on Jacobians of general curves
HTML articles powered by AMS MathViewer
- by Kamal Khuri-Makdisi;
- Math. Comp. 76 (2007), 2213-2239
- DOI: https://doi.org/10.1090/S0025-5718-07-01989-8
- Published electronically: April 23, 2007
- PDF | Request permission
Abstract:
Let $C$ be a curve of genus $g$ over a field $k$. We describe probabilistic algorithms for addition and inversion of the classes of rational divisors in the Jacobian of $C$. After a precomputation, which is done only once for the curve $C$, the algorithms use only linear algebra in vector spaces of dimension at most $O(g \log g)$, and so take $O(g^{3 + \epsilon })$ field operations in $k$, using Gaussian elimination. Using fast algorithms for the linear algebra, one can improve this time to $O(g^{2.376})$. This represents a significant improvement over the previous record of $O(g^4)$ field operations (also after a precomputation) for general curves of genus $g$.References
- Dan Abramovich, A linear lower bound on the gonality of modular curves, Internat. Math. Res. Notices 20 (1996), 1005–1011. MR 1422373, DOI 10.1155/S1073792896000621
- Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Second printing. MR 413592
- Greg W. Anderson, Abeliants and their application to an elementary construction of Jacobians, Adv. Math. 172 (2002), no. 2, 169–205. MR 1942403, DOI 10.1016/S0001-8708(02)00024-5
- Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, Algebraic complexity theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997. With the collaboration of Thomas Lickteig. MR 1440179, DOI 10.1007/978-3-662-03338-8
- Joel Brawley and Shuhong Gao, On density of primitive elements for field extensions, 2004 preprint, may be electronically downloaded from the web at the URL http://www.math.clemson.edu/~sgao/pub.html
- Thomas Becker and Volker Weispfenning, Gröbner bases, Graduate Texts in Mathematics, vol. 141, Springer-Verlag, New York, 1993. A computational approach to commutative algebra; In cooperation with Heinz Kredel. MR 1213453, DOI 10.1007/978-1-4612-0913-3
- David G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp. 48 (1987), no. 177, 95–101. MR 866101, DOI 10.1090/S0025-5718-1987-0866101-0
- Wei-Liang Chow, The Jacobian variety of an algebraic curve, Amer. J. Math. 76 (1954), 453–476. MR 61421, DOI 10.2307/2372585
- Don Coppersmith and Shmuel Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9 (1990), no. 3, 251–280. MR 1056627, DOI 10.1016/S0747-7171(08)80013-2
- Wolfram Decker, Gert-Martin Greuel, and Gerhard Pfister, Primary decomposition: algorithms and comparisons, Algorithmic algebra and number theory (Heidelberg, 1997) Springer, Berlin, 1999, pp. 187–220. MR 1672046
- W. Eberly and M. Giesbrecht, Efficient decomposition of associative algebras over finite fields, J. Symbolic Comput. 29 (2000), no. 3, 441–458. MR 1751390, DOI 10.1006/jsco.1999.0308
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157
- Florian Hess, Zur Divisorenklassengruppenberechnung in globalen Funktionenkörpern, Ph.D. thesis, Technische Universität Berlin, 1999, may be downloaded from the web at http://www.math.tu-berlin.de/~kant/publications/diss/diss_FH.ps.gz
- F. Hess, Computing Riemann-Roch spaces in algebraic function fields and related topics, J. Symbolic Comput. 33 (2002), no. 4, 425–445. MR 1890579, DOI 10.1006/jsco.2001.0513
- Ming-Deh Huang and Doug Ierardi, Efficient algorithms for the Riemann-Roch problem and for addition in the Jacobian of a curve, J. Symbolic Comput. 18 (1994), no. 6, 519–539. MR 1334660, DOI 10.1006/jsco.1994.1063
- Gregor Kemper, The calculation of radical ideals in positive characteristic, J. Symbolic Comput. 34 (2002), no. 3, 229–238. MR 1935080, DOI 10.1006/jsco.2002.0560
- Kamal Khuri-Makdisi, Linear algebra algorithms for divisors on an algebraic curve, Math. Comp. 73 (2004), no. 245, 333–357. MR 2034126, DOI 10.1090/S0025-5718-03-01567-9
- Kamal Khuri-Makdisi, Asymptotically fast group operations on Jacobians of general curves (previous draft, version 2), 2004 preprint, may be electronically downloaded from the web at the URL http://arxiv.org/abs/math.NT/0409209v2
- Robert Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 500–559. MR 1082360
- The PARI Group, Bordeaux, PARI/GP, may be downloaded from the web at the URL http://pari.math.u-bordeaux.fr/
- W. Stein, Modular Forms Database, http://modular.math.washington.edu/Tables
- Emil J. Volcheck, Computing in the Jacobian of a plane algebraic curve, Algorithmic number theory (Ithaca, NY, 1994) Lecture Notes in Comput. Sci., vol. 877, Springer, Berlin, 1994, pp. 221–233. MR 1322725, DOI 10.1007/3-540-58691-1_{6}0
Bibliographic Information
- Kamal Khuri-Makdisi
- Affiliation: Mathematics Department and Center for Advanced Mathematical Sciences, American University of Beirut, Bliss Street, Beirut, Lebanon
- MR Author ID: 610136
- Email: kmakdisi@aub.edu.lb
- Received by editor(s): July 3, 2006
- Received by editor(s) in revised form: August 20, 2006
- Published electronically: April 23, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 2213-2239
- MSC (2000): Primary 11Y16, 14Q05, 14H40, 11G20
- DOI: https://doi.org/10.1090/S0025-5718-07-01989-8
- MathSciNet review: 2336292