Odd perfect numbers have at least nine distinct prime factors
HTML articles powered by AMS MathViewer
- by Pace P. Nielsen;
- Math. Comp. 76 (2007), 2109-2126
- DOI: https://doi.org/10.1090/S0025-5718-07-01990-4
- Published electronically: May 9, 2007
- PDF | Request permission
Abstract:
An odd perfect number, $N$, is shown to have at least nine distinct prime factors. If $3\nmid N$ then $N$ must have at least twelve distinct prime divisors. The proof ultimately avoids previous computational results for odd perfect numbers.References
- A. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. 5 IV (1886), 70–80, 130–137.
- Geo. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^n-b^n$, Ann. of Math. (2) 5 (1904), no. 4, 173–180. MR 1503541, DOI 10.2307/2007263
- R. P. Brent, G. L. Cohen, and H. J. J. te Riele, Improved techniques for lower bounds for odd perfect numbers, Math. Comp. 57 (1991), no. 196, 857–868. MR 1094940, DOI 10.1090/S0025-5718-1991-1094940-3
- Joseph E. Z. Chein, An odd perfect number has at least 8 prime factors, Ph.D. thesis, Pennsylvania State University, 1979.
- Graeme L. Cohen and Ronald M. Sorli, On the number of distinct prime factors of an odd perfect number, J. Discrete Algorithms 1 (2003), no. 1, 21–35. Combinatorial algorithms. MR 2016472, DOI 10.1016/S1570-8667(03)00004-2
- R. J. Cook, Bounds for odd perfect numbers, Number theory (Ottawa, ON, 1996) CRM Proc. Lecture Notes, vol. 19, Amer. Math. Soc., Providence, RI, 1999, pp. 67–71. MR 1684591, DOI 10.1090/crmp/019/07
- Leonard Eugene Dickson, Finiteness of the Odd Perfect and Primitive Abundant Numbers with $n$ Distinct Prime Factors, Amer. J. Math. 35 (1913), no. 4, 413–422. MR 1506194, DOI 10.2307/2370405
- Otto Grün, Über ungerade vollkommene Zahlen, Math. Z. 55 (1952), 353–354 (German). MR 53123, DOI 10.1007/BF01181133
- Peter Hagis Jr., Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comp. 35 (1980), no. 151, 1027–1032. MR 572873, DOI 10.1090/S0025-5718-1980-0572873-9
- Peter Hagis Jr., Sketch of a proof that an odd perfect number relatively prime to $3$ has at least eleven prime factors, Math. Comp. 40 (1983), no. 161, 399–404. MR 679455, DOI 10.1090/S0025-5718-1983-0679455-1
- Kevin G. Hare, More on the total number of prime factors of an odd perfect number, Math. Comp. 74 (2005), no. 250, 1003–1008. MR 2114661, DOI 10.1090/S0025-5718-04-01683-7
- D. R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 2, 191–196. MR 1277055, DOI 10.1017/S0305004100072030
- Douglas E. Iannucci, The second largest prime divisor of an odd perfect number exceeds ten thousand, Math. Comp. 68 (1999), no. 228, 1749–1760. MR 1651761, DOI 10.1090/S0025-5718-99-01126-6
- Douglas E. Iannucci, The third largest prime divisor of an odd perfect number exceeds one hundred, Math. Comp. 69 (2000), no. 230, 867–879. MR 1651762, DOI 10.1090/S0025-5718-99-01127-8
- Paul M. Jenkins, Odd perfect numbers have a prime factor exceeding $10^7$, Math. Comp. 72 (2003), no. 243, 1549–1554. MR 1972752, DOI 10.1090/S0025-5718-03-01496-0
- Wilfrid Keller and Jörg Richstein, Solutions of the congruence $a^{p-1}\equiv 1\pmod {p^r}$, Math. Comp. 74 (2005), no. 250, 927–936. MR 2114655, DOI 10.1090/S0025-5718-04-01666-7
- Masao Kishore, On odd perfect, quasiperfect, and odd almost perfect numbers, Math. Comp. 36 (1981), no. 154, 583–586. MR 606516, DOI 10.1090/S0025-5718-1981-0606516-3
- Masao Kishore, Odd perfect numbers not divisible by $3$. II, Math. Comp. 40 (1983), no. 161, 405–411. MR 679456, DOI 10.1090/S0025-5718-1983-0679456-3
- Wayne L. McDaniel, The non-existence of odd perfect numbers of a certain form, Arch. Math. (Basel) 21 (1970), 52–53. MR 258723, DOI 10.1007/BF01220877
- Peter L. Montgomery, New solutions of $a^{p-1}\equiv 1\pmod {p^2}$, Math. Comp. 61 (1993), no. 203, 361–363. MR 1182246, DOI 10.1090/S0025-5718-1993-1182246-5
- Trygve Nagell, Introduction to Number Theory, John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm, 1951. MR 43111
- Pace P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003), A14, 9. MR 2036480
- Carl Pomerance, Odd perfect numbers are divisible by at least seven distinct primes, Acta Arith. 25 (1973/74), 265–300. MR 340169, DOI 10.4064/aa-25-3-265-300
- Carl Pomerance, Multiply perfect numbers, Mersenne primes, and effective computability, Math. Ann. 226 (1977), no. 3, 195–206. MR 439730, DOI 10.1007/BF01362422
- John Voight, On the nonexistence of odd perfect numbers, MASS selecta, Amer. Math. Soc., Providence, RI, 2003, pp. 293–300. MR 2027187
Bibliographic Information
- Pace P. Nielsen
- Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
- MR Author ID: 709329
- Email: pace_nielsen@hotmail.com
- Received by editor(s): April 1, 2006
- Received by editor(s) in revised form: September 1, 2006
- Published electronically: May 9, 2007
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 76 (2007), 2109-2126
- MSC (2000): Primary 11N25; Secondary 11Y50
- DOI: https://doi.org/10.1090/S0025-5718-07-01990-4
- MathSciNet review: 2336286