Lattice-Boltzmann type relaxation systems and high order relaxation schemes for the incompressible Navier-Stokes equations
Authors:
Mapundi Banda, Axel Klar, Lorenzo Pareschi and Mohammed Seaïd
Journal:
Math. Comp. 77 (2008), 943-965
MSC (2000):
Primary 76P05, 76D05, 65M06, 35B25
DOI:
https://doi.org/10.1090/S0025-5718-07-02034-0
Published electronically:
December 17, 2007
MathSciNet review:
2373186
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A relaxation system based on a Lattice-Boltzmann type discrete velocity model is considered in the low Mach number limit. A third order relaxation scheme is developed working uniformly for all ranges of the mean free path and Mach number. In the incompressible Navier-Stokes limit the scheme reduces to an explicit high order finite difference scheme for the incompressible Navier-Stokes equations based on nonoscillatory upwind discretization. Numerical results and comparisons with other approaches are presented for several test cases in one and two space dimensions.
- 1. Alexander Kurganov and Doron Levy, A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations, SIAM J. Sci. Comput. 22 (2000), no. 4, 1461–1488. MR 1797891, https://doi.org/10.1137/S1064827599360236
- 2. Doron Levy, Gabriella Puppo, and Giovanni Russo, Central WENO schemes for hyperbolic systems of conservation laws, M2AN Math. Model. Numer. Anal. 33 (1999), no. 3, 547–571 (English, with English and French summaries). MR 1713238, https://doi.org/10.1051/m2an:1999152
- 3. Doron Levy, Gabriella Puppo, and Giovanni Russo, Compact central WENO schemes for multidimensional conservation laws, SIAM J. Sci. Comput. 22 (2000), no. 2, 656–672. MR 1780619, https://doi.org/10.1137/S1064827599359461
- 4. Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math. 25 (1997), no. 2-3, 151–167. Special issue on time integration (Amsterdam, 1996). MR 1485812, https://doi.org/10.1016/S0168-9274(97)00056-1
- 5. Claude Bardos, François Golse, and David Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Statist. Phys. 63 (1991), no. 1-2, 323–344. MR 1115587, https://doi.org/10.1007/BF01026608
- 6.
R. Benzi, S. Succi, and M. Vergassola.
The Lattice-Boltzmann equation: Theory and applications.
Physics Reports, 222:145-197, 1992. - 7. Russel E. Caflisch, Shi Jin, and Giovanni Russo, Uniformly accurate schemes for hyperbolic systems with relaxation, SIAM J. Numer. Anal. 34 (1997), no. 1, 246–281. MR 1445737, https://doi.org/10.1137/S0036142994268090
- 8.
N. Cao, S. Chen, S. Jin, and D. Martinez.
Physical symmetry and lattice symmetry in Lattice Boltzmann methods.
Phys. Rev. E, 55:21, 1997. - 9.
H. Chen, S. Chen, and W. Matthaeus.
Recovery of the Navier-Stokes equations using a Lattice-gas Boltzmann method.
Physical Review A, 45:5339-5342, 1992. - 10. Shiyi Chen and Gary D. Doolen, Lattice Boltzmann method for fluid flows, Annual review of fluid mechanics, Vol. 30, Annu. Rev. Fluid Mech., vol. 30, Annual Reviews, Palo Alto, CA, 1998, pp. 329–364. MR 1609606, https://doi.org/10.1146/annurev.fluid.30.1.329
- 11.
D. Aregba-Driollet, R. Natalini, and S.Q. Tang.
Diffusive kinetic explicit schemes for nonlinear degenerate parabolic systems.
Quaderno IAC 26, 2000. - 12. A. De Masi, R. Esposito, and J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Comm. Pure Appl. Math. 42 (1989), no. 8, 1189–1214. MR 1029125, https://doi.org/10.1002/cpa.3160420810
- 13.
D. d'Humières.
Generalized Lattice-Boltzmann Equations in: AIAA Rarefied Gas Dynamics: Theory and Applications.
Progress in Astronautics and Aeoronautics, 159:450-458, 1992. - 14. Franca Bianco, Gabriella Puppo, and Giovanni Russo, High-order central schemes for hyperbolic systems of conservation laws, SIAM J. Sci. Comput. 21 (1999), no. 1, 294–322. MR 1722134, https://doi.org/10.1137/S1064827597324998
- 15. Salvatore Fabio Liotta, Vittorio Romano, and Giovanni Russo, Central schemes for balance laws of relaxation type, SIAM J. Numer. Anal. 38 (2000), no. 4, 1337–1356. MR 1790036, https://doi.org/10.1137/S0036142999363061
- 16. P. H. Gaskell and A. K. C. Lau, Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm, Internat. J. Numer. Methods Fluids 8 (1988), no. 6, 617–641. MR 944575, https://doi.org/10.1002/fld.1650080602
- 17.
L. Giraud, D. d'Humieres, and P. Lallemand.
A lattice Boltzmann model for Jeffreys viscoelastic fluid.
Europhys. Lett., 42:625-630, 1998. - 18. Giovanni Naldi, Lorenzo Pareschi, and Giuseppe Toscani, Relaxation schemes for partial differential equations and applications to degenerate diffusion problems, Surveys Math. Indust. 10 (2002), no. 4, 315–343. MR 2012453
- 19.
X. He and L.S. Luo.
A-priori derivation of the lattice Boltzmann equation.
Phys. Rev. E, 55:6333-6336, 1997. - 20. Xiaoyi He and Li-Shi Luo, Lattice Boltzmann model for the incompressible Navier-Stokes equation, J. Statist. Phys. 88 (1997), no. 3-4, 927–944. MR 1467637, https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
- 21. Takaji Inamuro, Masato Yoshino, and Fumimaru Ogino, Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number, Phys. Fluids 9 (1997), no. 11, 3535–3542. MR 1478126, https://doi.org/10.1063/1.869426
- 22. Guang-Shan Jiang and Eitan Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput. 19 (1998), no. 6, 1892–1917. MR 1638064, https://doi.org/10.1137/S106482759631041X
- 23. Shi Jin and C. David Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, J. Comput. Phys. 126 (1996), no. 2, 449–467. MR 1404381, https://doi.org/10.1006/jcph.1996.0149
- 24. Shi Jin, Lorenzo Pareschi, and Giuseppe Toscani, Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations, SIAM J. Numer. Anal. 35 (1998), no. 6, 2405–2439. MR 1655853, https://doi.org/10.1137/S0036142997315962
- 25. Shi Jin, Lorenzo Pareschi, and Giuseppe Toscani, Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations, SIAM J. Numer. Anal. 35 (1998), no. 6, 2405–2439. MR 1655853, https://doi.org/10.1137/S0036142997315962
- 26. Shi Jin and Zhou Ping Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), no. 3, 235–276. MR 1322811, https://doi.org/10.1002/cpa.3160480303
- 27. C. T. Kelley, Iterative methods for linear and nonlinear equations, Frontiers in Applied Mathematics, vol. 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. With separately available software. MR 1344684
- 28. Axel Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit, SIAM J. Numer. Anal. 35 (1998), no. 3, 1073–1094. MR 1619859, https://doi.org/10.1137/S0036142996305558
- 29. Axel Klar, Relaxation scheme for a lattice-Boltzmann-type discrete velocity model and numerical Navier-Stokes limit, J. Comput. Phys. 148 (1999), no. 2, 416–432. MR 1669711, https://doi.org/10.1006/jcph.1998.6123
- 30. Raz Kupferman and Eitan Tadmor, A fast, high resolution, second-order central scheme for incompressible flows, Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 10, 4848–4852. MR 1453829, https://doi.org/10.1073/pnas.94.10.4848
- 31. Alexander Kurganov, Sebastian Noelle, and Guergana Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput. 23 (2001), no. 3, 707–740. MR 1860961, https://doi.org/10.1137/S1064827500373413
- 32. Ann S. Almgren, John B. Bell, and William G. Szymczak, A numerical method for the incompressible Navier-Stokes equations based on an approximate projection, SIAM J. Sci. Comput. 17 (1996), no. 2, 358–369. MR 1374285, https://doi.org/10.1137/S1064827593244213
- 33. John B. Bell, Phillip Colella, and Harland M. Glaz, A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys. 85 (1989), no. 2, 257–283. MR 1029192, https://doi.org/10.1016/0021-9991(89)90151-4
- 34. Alexander Kurganov and Eitan Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160 (2000), no. 1, 241–282. MR 1756766, https://doi.org/10.1006/jcph.2000.6459
- 35. Lorenzo Pareschi, Central differencing based numerical schemes for hyperbolic conservation laws with relaxation terms, SIAM J. Numer. Anal. 39 (2001), no. 4, 1395–1417. MR 1870848, https://doi.org/10.1137/S0036142900375906
- 36. Alexei A. Medovikov, High order explicit methods for parabolic equations, BIT 38 (1998), no. 2, 372–390. MR 1638136, https://doi.org/10.1007/BF02512373
- 37. Haim Nessyahu and Eitan Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys. 87 (1990), no. 2, 408–463. MR 1047564, https://doi.org/10.1016/0021-9991(90)90260-8
- 38.
L. Pareschi and G. Russo.
Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations.
In L. Brugnano and D. Trigiante, editors, Recent Trends in Numerical Analysis, pages 269 - 289, 2000. - 39. Roger Peyret and Thomas Darwin Taylor, Computational methods for fluid flow, Springer Series in Computational Physics, Springer-Verlag, New York-Berlin, 1983. MR 681481
- 40.
Y.H. Qian, D. d'Humieres, and P. Lallemand.
Lattice BGK models for the Navier Stokes equation.
Europhys. Letters, 17:479-484, 1992. - 41. Richard Sanders and Alan Weiser, A high order staggered grid method for hyperbolic systems of conservation laws in one space dimension, Proceedings of the Eighth International Conference on Computing Methods in Applied Sciences and Engineering (Versailles, 1987), 1989, pp. 91–107. MR 1035749, https://doi.org/10.1016/0045-7825(89)90017-0
- 42.
X. Shan and X. He.
Discretization of the Velocity Space in the Solution of the Boltzmann Equation.
Phys. Rev. Letter, 80:65-68, 1998. - 43. Guang-Shan Jiang and Chi-Wang Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996), no. 1, 202–228. MR 1391627, https://doi.org/10.1006/jcph.1996.0130
- 44.
Y. Sone.
Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers.
In R. Gatignol and Soubbaramayer, editors, Advances in Kinetic Theory and Continuum Mechanics, Proceedings of a Symposium Held in Honour of Henri Cabannes (Paris), Springer, pages 19-31, 1990.
Retrieve articles in Mathematics of Computation with MSC (2000): 76P05, 76D05, 65M06, 35B25
Retrieve articles in all journals with MSC (2000): 76P05, 76D05, 65M06, 35B25
Additional Information
Mapundi Banda
Affiliation:
School of Mathematical Sciences, University of KwaZulu-Natal, Private X01, 3209 Pietermaritzburg, South Africa
Email:
bandamk@ukzn.ac.za
Axel Klar
Affiliation:
Fachbereich Mathematik, TU Kaiserslautern, Erwin-Schroedinger-Str. 48, D-67663 Kaiserslautern, Germany
Email:
klar@mathematik.uni-kl.de
Lorenzo Pareschi
Affiliation:
Department of Mathematics, University of Ferrara, Via Machiavelli 35, I-44100 Ferrara, Italy
Email:
pareschi@dm.unife.it
Mohammed Seaïd
Affiliation:
Fachbereich Mathematik, TU Kaiserslautern, Erwin-Schroedinger-Str. 48, D-67663 Kaiserslautern, Germany
Email:
seaid@mathematik.uni-kl.de
DOI:
https://doi.org/10.1090/S0025-5718-07-02034-0
Keywords:
Lattice-Boltzmann method,
relaxation schemes,
low Mach number limit,
incompressible Navier-Stokes equations,
high order upwind schemes,
Runge-Kutta methods,
stiff equations
Received by editor(s):
November 10, 2005
Received by editor(s) in revised form:
January 15, 2007
Published electronically:
December 17, 2007
Additional Notes:
This work was supported by DFG grant KL 1105/9-1 and partially by TMR project “Asymptotic Methods in Kinetic Theory”, Contract Number ERB FMRX CT97 0157.
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.