Global smooth solution curves using rigorous branch following
HTML articles powered by AMS MathViewer
- by Jan Bouwe van den Berg, Jean-Philippe Lessard and Konstantin Mischaikow;
- Math. Comp. 79 (2010), 1565-1584
- DOI: https://doi.org/10.1090/S0025-5718-10-02325-2
- Published electronically: March 11, 2010
- PDF | Request permission
Abstract:
In this paper, we present a new method for rigorously computing smooth branches of zeros of nonlinear operators $f:\mathbb {R}^{l_1} \times B_1 \rightarrow \mathbb {R}^{l_2} \times B_2$, where $B_1$ and $B_2$ are Banach spaces. The method is first introduced for parameter continuation and then generalized to pseudo-arclength continuation. Examples in the context of ordinary, partial and delay differential equations are given.References
- Jan Bouwe van den Berg and Jean-Philippe Lessard, Chaotic braided solutions via rigorous numerics: chaos in the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst. 7 (2008), no. 3, 988–1031. MR 2443030, DOI 10.1137/070709128
- B. Breuer, J. Horák, P. J. McKenna, and M. Plum, A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam, J. Differential Equations 224 (2006), no. 1, 60–97. MR 2220064, DOI 10.1016/j.jde.2005.07.016
- Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften, vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633
- Sarah Day, Yasuaki Hiraoka, Konstantin Mischaikow, and Toshiyuki Ogawa, Rigorous numerics for global dynamics: a study of the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst. 4 (2005), no. 1, 1–31. MR 2136516, DOI 10.1137/040604479
- Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow, Validated continuation for equilibria of PDEs, SIAM J. Numer. Anal. 45 (2007), no. 4, 1398–1424. MR 2338393, DOI 10.1137/050645968
- M. Gameiro and J.-P. Lessard. A Priori estimates and rigorous continuation for equilibria of higher-dimensional PDEs. To appear in Journal of Differential Equations, 2010.
- Marcio Gameiro, Jean-Philippe Lessard, and Konstantin Mischaikow, Validated continuation over large parameter ranges for equilibria of PDEs, Math. Comput. Simulation 79 (2008), no. 4, 1368–1382. MR 2487806, DOI 10.1016/j.matcom.2008.03.014
- H. B. Keller, Lectures on numerical methods in bifurcation problems, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 79, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1987. With notes by A. K. Nandakumaran and Mythily Ramaswamy. MR 910499
- J.-P. Lessard. Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright’s equation. To appear in Journal of Differential Equations, 2010.
- Ulrich Miller, Rigorous numerics using Conley index theory, Augsburger Schriften zur Mathematik, Physik und Informatik [Augsburger Publications of Mathematics, Physics and Information Sciences], vol. 9, Logos Verlag Berlin, Berlin, 2005. With a preface by Stanislaus Maier-Paape. MR 2275297
- Teruya Minamoto and Mitsuhiro T. Nakao, Numerical method for verifying the existence and local uniqueness of a double turning point for a radially symmetric solution of the perturbed Gelfand equation, J. Comput. Appl. Math. 202 (2007), no. 2, 177–185. MR 2319947, DOI 10.1016/j.cam.2006.02.023
- Nobito Yamamoto and Mitsuhiro T. Nakao, Numerical verifications for solutions to elliptic equations using residual iterations with a higher order finite element, J. Comput. Appl. Math. 60 (1995), no. 1-2, 271–279. Linear/nonlinear iterative methods and verification of solution (Matsuyama, 1993). MR 1354660, DOI 10.1016/0377-0427(94)00096-J
- Mitsuhiro T. Nakao and Yoshitaka Watanabe, An efficient approach to the numerical verification for solutions of elliptic differential equations, Numer. Algorithms 37 (2004), no. 1-4, 311–323. MR 2109916, DOI 10.1023/B:NUMA.0000049477.75366.94
- Michael Plum, Computer-assisted enclosure methods for elliptic differential equations, Linear Algebra Appl. 324 (2001), no. 1-3, 147–187. Special issue on linear algebra in self-validating methods. MR 1810529, DOI 10.1016/S0024-3795(00)00273-1
- Michael Plum, Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems, J. Comput. Appl. Math. 60 (1995), no. 1-2, 187–200. Linear/nonlinear iterative methods and verification of solution (Matsuyama, 1993). MR 1354655, DOI 10.1016/0377-0427(94)00091-E
- E. M. Wright, A non-linear difference-differential equation, J. Reine Angew. Math. 194 (1955), 66–87. MR 72363, DOI 10.1515/crll.1955.194.66
- Nobito Yamamoto, A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem, SIAM J. Numer. Anal. 35 (1998), no. 5, 2004–2013. MR 1639986, DOI 10.1137/S0036142996304498
- Piotr Zgliczyński and Konstantin Mischaikow, Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation, Found. Comput. Math. 1 (2001), no. 3, 255–288. MR 1838755, DOI 10.1007/s102080010010
Bibliographic Information
- Jan Bouwe van den Berg
- Affiliation: VU University Amsterdam, Department of Mathematics, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- MR Author ID: 639255
- Email: janbouwe@few.vu.nl
- Jean-Philippe Lessard
- Affiliation: Rutgers University, Department of Mathematics, Hill Center-Busch Campus, 110 Frelinghuysen Rd, Piscataway, New Jersey 08854-8019 and VU University Amsterdam, Department of Mathematics, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Email: lessard@math.rutgers.edu
- Konstantin Mischaikow
- Affiliation: Rutgers Univeristy, Department of Mathematics, Hill Center-Busch Campus, 110 Frelinghuysen Rd, Piscataway, New Jersey 08854-8019
- MR Author ID: 249919
- Email: mischaik@math.rutgers.edu
- Received by editor(s): September 29, 2009
- Received by editor(s) in revised form: May 18, 2009
- Published electronically: March 11, 2010
- Additional Notes: The second author was supported in part by NSF Grant DMS-0511115, by DARPA, and by DOE Grant DE-FG02-05ER25711.
The third author was supported by NSF Grant DMS-0638131, DMS-0835621, DMS-0915019, DARPA, DOE Grant DE-FG02-05ER25711, and by AFOSR - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 1565-1584
- MSC (2010): Primary 37M99; Secondary 65G20, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-10-02325-2
- MathSciNet review: 2630003