Asymptotics of greedy energy points
Authors:
A. López García and E. B. Saff
Journal:
Math. Comp. 79 (2010), 2287-2316
MSC (2010):
Primary 65D99, 52A40; Secondary 78A30
DOI:
https://doi.org/10.1090/S0025-5718-10-02358-6
Published electronically:
April 16, 2010
MathSciNet review:
2684365
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: For a symmetric kernel on a locally compact metric space
, we investigate the asymptotic behavior of greedy
-energy points
for a compact subset
that are defined inductively by selecting
arbitrarily and
so that
. We give sufficient conditions under which these points (also known as Leja points) are asymptotically energy minimizing (i.e. have energy
as
that is asymptotically the same as
), and have asymptotic distribution equal to the equilibrium measure for
. For the case of Riesz kernels
,
, we show that if
is a rectifiable Jordan arc or closed curve in
and
, then greedy
-energy points are not asymptotically energy minimizing, in contrast to the case
. (In fact, we show that no sequence of points can be asymptotically energy minimizing for
.) Additional results are obtained for greedy
-energy points on a sphere, for greedy best-packing points (the case
), and for weighted Riesz kernels. For greedy best-packing points we provide a simple counterexample to a conjecture attributed to L. Bos.
- 1. J. Baglama, D. Calvetti, and L. Reichel, Fast Leja points, Electron. Trans. Numer. Anal. 7 (1998), 124–140. Large scale eigenvalue problems (Argonne, IL, 1997). MR 1667643
- 2. A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, and D.A. Weitz, Grain boundary scars and spherical crystallography, Science 299 (2003), 1716-1718.
- 3. József Beck, The modulus of polynomials with zeros on the unit circle: a problem of Erdős, Ann. of Math. (2) 134 (1991), no. 3, 609–651. MR 1135879, https://doi.org/10.2307/2944358
- 4. S. V. Borodachov, D. P. Hardin, and E. B. Saff, Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets, Trans. Amer. Math. Soc. 360 (2008), no. 3, 1559–1580. MR 2357705, https://doi.org/10.1090/S0002-9947-07-04416-9
- 5. S. V. Borodachov, D. P. Hardin, and E. B. Saff, Asymptotics of best-packing on rectifiable sets, Proc. Amer. Math. Soc. 135 (2007), no. 8, 2369–2380. MR 2302558, https://doi.org/10.1090/S0002-9939-07-08975-7
- 6. J. S. Brauchart, D. P. Hardin, and E. B. Saff, The Riesz energy of the 𝑁th roots of unity: an asymptotic expansion for large 𝑁, Bull. Lond. Math. Soc. 41 (2009), no. 4, 621–633. MR 2521357, https://doi.org/10.1112/blms/bdp034
- 7. M. Bowick, D.R. Nelson, and A. Travesset, Interacting topological defects in frozen topographies, Phys. Rev. B62 (2000), 8738-8751.
- 8. J. S. Brauchart, Optimal logarithmic energy points on the unit sphere, Math. Comp. 77 (2008), no. 263, 1599–1613. MR 2398782, https://doi.org/10.1090/S0025-5718-08-02085-1
- 9. Gustave Choquet, Theory of capacities, Ann. Inst. Fourier, Grenoble 5 (1953–1954), 131–295 (1955). MR 0080760
- 10. G. Choquet, Diamètre transfini et comparaison de diverses capacités, Technical report, Faculté des Sciences de Paris (1958).
- 11. Dan I. Coroian and Peter Dragnev, Constrained Leja points and the numerical solution of the constrained energy problem, J. Comput. Appl. Math. 131 (2001), no. 1-2, 427–444. MR 1835725, https://doi.org/10.1016/S0377-0427(00)00258-2
- 12. Stefano De Marchi, On Leja sequences: some results and applications, Appl. Math. Comput. 152 (2004), no. 3, 621–647. MR 2062764, https://doi.org/10.1016/S0096-3003(03)00580-0
- 13. P. D. Dragnev and E. B. Saff, Riesz spherical potentials with external fields and minimal energy points separation, Potential Anal. 26 (2007), no. 2, 139–162. MR 2276529, https://doi.org/10.1007/s11118-006-9032-2
- 14. Albert Edrei, Sur les déterminants récurrents et les singularités d’une fonction donnée par son développement de Taylor, Compositio Math. 7 (1939), 20–88 (French). MR 0001285
- 15. T. Erber and G. M. Hockney, Complex systems: equilibrium configurations of 𝑁 equal charges on a sphere (2≤𝑁≤112), Advances in chemical physics, Vol. XCVIII, Adv. Chem. Phys., XCVIII, Wiley, New York, 1997, pp. 495–594. MR 1238214
- 16. Bálint Farkas and Béla Nagy, Transfinite diameter, Chebyshev constant and energy on locally compact spaces, Potential Anal. 28 (2008), no. 3, 241–260. MR 2386099, https://doi.org/10.1007/s11118-008-9075-7
- 17. Bent Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139–215. MR 0117453, https://doi.org/10.1007/BF02546356
- 18. J. Górski, Les suites de points extrémaux liés aux ensembles dans l’espace à 3 dimensions, Ann. Polon. Math. 4 (1957), 14–20 (French). MR 0121770, https://doi.org/10.4064/ap-4-1-14-20
- 19. Mario Götz, On the distribution of Leja-Górski points, J. Comput. Anal. Appl. 3 (2001), no. 3, 223–241. MR 1840565, https://doi.org/10.1023/A:1011597427738
- 20. D. P. Hardin and E. B. Saff, Minimal Riesz energy point configurations for rectifiable 𝑑-dimensional manifolds, Adv. Math. 193 (2005), no. 1, 174–204. MR 2132763, https://doi.org/10.1016/j.aim.2004.05.006
- 21. A. B. J. Kuijlaars and E. B. Saff, Asymptotics for minimal discrete energy on the sphere, Trans. Amer. Math. Soc. 350 (1998), no. 2, 523–538. MR 1458327, https://doi.org/10.1090/S0002-9947-98-02119-9
- 22. N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027
- 23. F. Leja, Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme, Ann. Polon. Math. 4 (1957), 8–13. MR 0100726, https://doi.org/10.4064/ap-4-1-8-13
- 24. A. López García, Ph.D. Dissertation, Vanderbilt University.
- 25. A. Martínez-Finkelshtein, V. Maymeskul, E. A. Rakhmanov, and E. B. Saff, Asymptotics for minimal discrete Riesz energy on curves in ℝ^{𝕕}, Canad. J. Math. 56 (2004), no. 3, 529–552. MR 2057285, https://doi.org/10.4153/CJM-2004-024-1
- 26. Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
- 27. Makoto Ohtsuka, On potentials in locally compact spaces, J. Sci. Hiroshima Univ. Ser. A-I Math. 25 (1961), 135–352. MR 0180695
- 28. E. B. Saff and A. B. J. Kuijlaars, Distributing many points on a sphere, Math. Intelligencer 19 (1997), no. 1, 5–11. MR 1439152, https://doi.org/10.1007/BF03024331
- 29. Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR 1485778
- 30. J. Siciak, Two criteria for the continuity of the equilibrium Riesz potentials., Comment. Math. Prace Mat. 14 (1970), 91–99. MR 0277742
- 31. N. V. Zoriĭ, Equilibrium problems for potentials with external fields, Ukraïn. Mat. Zh. 55 (2003), no. 10, 1315–1339 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 55 (2003), no. 10, 1588–1618. MR 2073873, https://doi.org/10.1023/B:UKMA.0000022070.73078.7b
- 32. N. V. Zoriĭ, Equilibrium potentials with external fields, Ukraïn. Mat. Zh. 55 (2003), no. 9, 1178–1195 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 55 (2003), no. 9, 1423–1444. MR 2075132, https://doi.org/10.1023/B:UKMA.0000018005.67743.86
Retrieve articles in Mathematics of Computation with MSC (2010): 65D99, 52A40, 78A30
Retrieve articles in all journals with MSC (2010): 65D99, 52A40, 78A30
Additional Information
A. López García
Affiliation:
Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Email:
abey.lopez@vanderbilt.edu
E. B. Saff
Affiliation:
Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
Email:
edward.b.saff@vanderbilt.edu
DOI:
https://doi.org/10.1090/S0025-5718-10-02358-6
Keywords:
Minimal energy,
Leja points,
equilibrium measure,
Riesz kernels,
best-packing configurations,
Voronoi cells
Received by editor(s):
December 12, 2008
Received by editor(s) in revised form:
June 27, 2009
Published electronically:
April 16, 2010
Additional Notes:
The results of this paper form a part of the first author’s Ph.D. dissertation at Vanderbilt University
The research of the second author was supported, in part, by National Science Foundation grants DMS-0603828 and DMS-0808093.
Article copyright:
© Copyright 2010
A. López García and E. B. Saff