## Computing the Hilbert transform and its inverse

HTML articles powered by AMS MathViewer

- by Sheehan Olver PDF
- Math. Comp.
**80**(2011), 1745-1767 Request permission

## Abstract:

We construct a new method for approximating Hilbert transforms and their inverse throughout the complex plane. Both problems can be formulated as Riemann–Hilbert problems via Plemelj’s lemma. Using this framework, we rederive existing approaches for computing Hilbert transforms over the real line and unit interval, with the added benefit that we can compute the Hilbert transform in the complex plane. We then demonstrate the power of this approach by generalizing to the half line. Combining two half lines, we can compute the Hilbert transform of a more general class of functions on the real line than is possible with existing methods.## References

- Mark J. Ablowitz and Athanassios S. Fokas,
*Complex variables: introduction and applications*, 2nd ed., Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2003. MR**1989049**, DOI 10.1017/CBO9780511791246 - Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR**0167642** - S. Aksenov, M.A. Savageau, U.D. Jentschura, J. Becher, G. Soff, and P.J. Mohr,
*Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics*, Comp. Phys. Comm.**150**(2003), 1–20. - Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi,
*Higher transcendental functions. Vols. I, II*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR**0058756** - T. Benjamin,
*Internal waves of permanent form in fluids of great depth*, J. Fluid Mech.**29**(1967), 559–562. - Jean-Paul Berrut and Lloyd N. Trefethen,
*Barycentric Lagrange interpolation*, SIAM Rev.**46**(2004), no. 3, 501–517. MR**2115059**, DOI 10.1137/S0036144502417715 - S. Jonathan Chapman and Jean-Marc Vanden-Broeck,
*Exponential asymptotics and gravity waves*, J. Fluid Mech.**567**(2006), 299–326. MR**2271560**, DOI 10.1017/S0022112006002394 - C. W. Clenshaw and A. R. Curtis,
*A method for numerical integration on an automatic computer*, Numer. Math.**2**(1960), 197–205. MR**117885**, DOI 10.1007/BF01386223 - M. C. De Bonis, B. Della Vecchia, and G. Mastroianni,
*Approximation of the Hilbert transform on the real semiaxis using Laguerre zeros*, Proceedings of the 9th International Congress on Computational and Applied Mathematics (Leuven, 2000), 2002, pp. 209–229. MR**1933238**, DOI 10.1016/S0377-0427(01)00529-5 - P. A. Deift,
*Orthogonal polynomials and random matrices: a Riemann-Hilbert approach*, Courant Lecture Notes in Mathematics, vol. 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR**1677884** - Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov,
*Painlevé transcendents*, Mathematical Surveys and Monographs, vol. 128, American Mathematical Society, Providence, RI, 2006. The Riemann-Hilbert approach. MR**2264522**, DOI 10.1090/surv/128 - Stefan L. Hahn,
*Hilbert transforms in signal processing*, The Artech House Signal Processing Library, Artech House, Inc., Boston, MA, 1996. MR**1434304** - Nicholas J. Higham,
*The numerical stability of barycentric Lagrange interpolation*, IMA J. Numer. Anal.**24**(2004), no. 4, 547–556. MR**2094569**, DOI 10.1093/imanum/24.4.547 - Arieh Iserles and Syvert P. Nørsett,
*Efficient quadrature of highly oscillatory integrals using derivatives*, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.**461**(2005), no. 2057, 1383–1399. MR**2147752**, DOI 10.1098/rspa.2004.1401 - Frederick W. King,
*Hilbert transforms. Vol. 1*, Encyclopedia of Mathematics and its Applications, vol. 124, Cambridge University Press, Cambridge, 2009. MR**2542214** - Frederick W. King,
*Hilbert transforms. Vol. 2*, Encyclopedia of Mathematics and its Applications, vol. 125, Cambridge University Press, Cambridge, 2009. MR**2542215** - Frederick W. King, Gregory J. Smethells, Geir T. Helleloid, and Paul J. Pelzl,
*Numerical evaluation of Hilbert transforms for oscillatory functions: a convergence accelerator approach*, Comput. Phys. Comm.**145**(2002), no. 2, 256–266. MR**1905731**, DOI 10.1016/S0010-4655(02)00155-8 - H. Kober,
*A note on Hilbert transforms*, Quart. J. Math. Oxford Ser.**14**(1943), 49–54. MR**9649**, DOI 10.1093/qmath/os-14.1.49 - N. I. Muskhelishvili,
*Singular integral equations*, Noordhoff International Publishing, Leyden, 1977. Boundary problems of function theory and their application to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted of the 1958 edition. MR**0438058** - Mohamed M. S. Nasser,
*Numerical solution of the Riemann-Hilbert problem*, Punjab Univ. J. Math. (Lahore)**40**(2008), 9–29. MR**2586858** - Sheehan Olver,
*Moment-free numerical integration of highly oscillatory functions*, IMA J. Numer. Anal.**26**(2006), no. 2, 213–227. MR**2218631**, DOI 10.1093/imanum/dri040 - Sheehan Olver,
*Moment-free numerical approximation of highly oscillatory integrals with stationary points*, European J. Appl. Math.**18**(2007), no. 4, 435–447. MR**2344314**, DOI 10.1017/S0956792507007012 - S. Olver,
*Numerical solution of Riemann–Hilbert problems: Painlevé II*, to appear in Found. Comput. Maths, DOI:10:1007/S10208-010-9079-8. - Hiroaki Ono,
*Algebraic solitary waves in stratified fluids*, J. Phys. Soc. Japan**39**(1975), no. 4, 1082–1091. MR**398275**, DOI 10.1143/JPSJ.39.1082 - Lloyd N. Trefethen,
*Is Gauss quadrature better than Clenshaw-Curtis?*, SIAM Rev.**50**(2008), no. 1, 67–87. MR**2403058**, DOI 10.1137/060659831 - Rudolf Wegmann,
*Discrete Riemann-Hilbert problems, interpolation of simply closed curves, and numerical conformal mapping*, J. Comput. Appl. Math.**23**(1988), no. 3, 323–352. MR**964605**, DOI 10.1016/0377-0427(88)90005-2 - J. A. C. Weideman,
*Computing the Hilbert transform on the real line*, Math. Comp.**64**(1995), no. 210, 745–762. MR**1277773**, DOI 10.1090/S0025-5718-1995-1277773-8 - R. Wong,
*Asymptotic expansion of the Hilbert transform*, SIAM J. Math. Anal.**11**(1980), no. 1, 92–99. MR**556499**, DOI 10.1137/0511007

## Additional Information

**Sheehan Olver**- Affiliation: Numerical Analysis Group, Oxford University Mathematical Institute, 24-29 St Giles’, Oxford, England OX1 3LB
- MR Author ID: 783322
- ORCID: 0000-0001-6920-0826
- Email: Sheehan.Olver@sjc.ox.ac.uk
- Received by editor(s): November 30, 2009
- Received by editor(s) in revised form: February 7, 2010
- Published electronically: February 25, 2011
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**80**(2011), 1745-1767 - MSC (2010): Primary 65E05, 30E20, 32A55
- DOI: https://doi.org/10.1090/S0025-5718-2011-02418-X
- MathSciNet review: 2785477