Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Uniform-in-time error estimates for spectral Galerkin approximations of a mass diffusion model
HTML articles powered by AMS MathViewer

by J. V. Gutiérrez-Santacreu and M. A. Rojas-Medar PDF
Math. Comp. 81 (2012), 191-218 Request permission

Abstract:

The goal of this paper is to present uniform-in-time error estimates by considering spectral Galerkin approximations of the Kazhikhov-Smagulov model for strong solutions. To be more precise, we derive an optimal uniform-in-time error bound in the $\boldsymbol {H}^1\times H^2$ norm for the velocity and density approximations being stated in Theorem 6.
References
  • Chérif Amrouche and Vivette Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 5, 171–175. MR 1114965
  • S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, vol. 22, North-Holland Publishing Co., Amsterdam, 1990. Translated from the Russian. MR 1035212
  • Hugo Beirão da Veiga, Raul Serapioni, and Alberto Valli, On the motion of nonhomogeneous fluids in the presence of diffusion, J. Math. Anal. Appl. 85 (1982), no. 1, 179–191. MR 647566, DOI 10.1016/0022-247X(82)90033-6
  • H. Beirão da Veiga, Diffusion on viscous fluids. Existence and asymptotic properties of solutions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 2, 341–355. MR 728440
  • H. Beirão da Veiga, Long time behaviour of the solutions to the Navier-Stokes equations with diffusion, Nonlinear Anal. 27 (1996), no. 11, 1229–1239. MR 1408868, DOI 10.1016/0362-546X(95)00117-E
  • J. L. Boldrini and M. Rojas-Medar, An error estimate uniform in time for spectral semi-Galerkin approximations of the nonhomogeneous Navier-Stokes equations, Numer. Funct. Anal. Optim. 15 (1994), no. 7-8, 755–778. MR 1305572, DOI 10.1080/01630569408816592
  • Pablo Braz e Silva and Marko Rojas-Medar, Error bounds for semi-Galerkin approximations of nonhomogeneous incompressible fluids, J. Math. Fluid Mech. 11 (2009), no. 2, 186–207. MR 2516131, DOI 10.1007/s00021-007-0255-9
  • Pedro D. Damázio and Marko A. Rojas Medar, On the convergence rate of semi-Galerkin approximations for the equations of viscous fluids in the presence of diffusion, Mat. Contemp. 15 (1998), 105–125 (English, with English and Portuguese summaries). Fifth Workshop on Partial Differential Equations (Rio de Janeiro, 1997). MR 1661647
  • P. D. Damázio, F. Guillén-González, J. V. Gutiérrez-Santacreu, and M. A. Rojas-Medar, Local and global strong solution by the semi-Galerkin method for the model of mass diffusion, Mat. Contemp. 32 (2007), 63–83. MR 2428427
  • D. A. Frank, V. I. Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, 1969.
  • F. Guillén-González, Sobre un modelo asintótico de difusión de masa para fluidos incompresibles, viscoso y no homogéneos. Prooceedings of the Third Catalan Days On Applied Mathematics (1996) 103-114, ISBN: 84-87029-87-6.
  • F. Guillén-González, P. Damázio, and M. A. Rojas-Medar, Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion, J. Math. Anal. Appl. 326 (2007), no. 1, 468–487. MR 2277796, DOI 10.1016/j.jmaa.2006.03.009
  • F. Guillén-González and J. V. Gutiérrez-Santacreu, Conditional stability and convergence of a fully discrete scheme for three-dimensional Navier-Stokes equations with mass diffusion, SIAM J. Numer. Anal. 46 (2008), no. 5, 2276–2308. MR 2421036, DOI 10.1137/07067951X
  • John G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29 (1980), no. 5, 639–681. MR 589434, DOI 10.1512/iumj.1980.29.29048
  • John G. Heywood, An error estimate uniform in time for spectral Galerkin approximations of the Navier-Stokes problem, Pacific J. Math. 98 (1982), no. 2, 333–345. MR 650014
  • John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), no. 2, 275–311. MR 650052, DOI 10.1137/0719018
  • John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal. 23 (1986), no. 4, 750–777. MR 849281, DOI 10.1137/0723049
  • John G. Heywood and Rolf Rannacher, An analysis of stability concepts for the Navier-Stokes equations, J. Reine Angew. Math. 372 (1986), 1–33. MR 863516, DOI 10.1515/crll.1986.372.1
  • A. V. Kažihov and Š. Smagulov, The correctness of boundary value problems in a certain diffusion model of an inhomogeneous fluid, Dokl. Akad. Nauk SSSR 234 (1977), no. 2, 330–332 (Russian). MR 0446059
  • O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Mathematics and its Applications, Vol. 2, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Second English edition, revised and enlarged; Translated from the Russian by Richard A. Silverman and John Chu. MR 0254401
  • V. Mikhaĭlov, Équations aux dérivées partielles, “Mir”, Moscow; distributed by Imported Publications, Chicago, Ill., 1980 (French). Translated from the Russian by Irina Petrova. MR 595502
  • Guy Métivier, Valeurs propres d’opérateurs définis par la restriction de systèmes variationnels à des sous-espaces, J. Math. Pures Appl. (9) 57 (1978), no. 2, 133–156 (French). MR 505900
  • Reimund Rautmann, On the convergence rate of nonstationary Navier-Stokes approximations, Approximation methods for Navier-Stokes problems (Proc. Sympos., Univ. Paderborn, Paderborn, 1979) Lecture Notes in Math., vol. 771, Springer, Berlin, 1980, pp. 425–449. MR 566012
  • B. Rummler, The eigenfunctions of the Stokes operator in special domains. I, Z. Angew. Math. Mech. 77 (1997), no. 8, 619–627 (English, with English and German summaries). MR 1470712, DOI 10.1002/zamm.19970770817
  • B. Rummler, The eigenfunctions of the Stokes operator in special domains. II, Z. Angew. Math. Mech. 77 (1997), no. 9, 669–675 (English, with English and German summaries). MR 1472965, DOI 10.1002/zamm.19970770905
  • D.-S. Lee and B. Rummler, The eigenfunctions of the Stokes operator in special domains. III, ZAMM Z. Angew. Math. Mech. 82 (2002), no. 6, 399–407. MR 1906228, DOI 10.1002/1521-4001(200206)82:6<399::AID-ZAMM399>3.0.CO;2-6
  • Rodolfo Salvi, On the existence of weak solutions of boundary value problems in a diffusion model for an inhomogeneous liquid in regions with moving boundaries, Portugal. Math. 43 (1985/86), no. 2, 213–233. MR 886668
  • R. Salvi, Error estimates for the spectral Galerkin approximations of the solutions of Navier-Stokes type equations, Glasgow Math. J. 31 (1989), no. 2, 199–211. MR 997818, DOI 10.1017/S0017089500007758
  • Paolo Secchi, On the initial value problem for the equations of motion of viscous incompressible fluids in the presence of diffusion, Boll. Un. Mat. Ital. B (6) 1 (1982), no. 3, 1117–1130 (English, with Italian summary). MR 683497
  • Paolo Secchi, On the motion of viscous fluids in the presence of diffusion, SIAM J. Math. Anal. 19 (1988), no. 1, 22–31. MR 924542, DOI 10.1137/0519002
  • Roger Temam, Navier-Stokes equations, Revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. Theory and numerical analysis; With an appendix by F. Thomasset. MR 603444
Similar Articles
Additional Information
  • J. V. Gutiérrez-Santacreu
  • Affiliation: Departmento Matemática Aplicada I, Universidad de Sevilla, E. T. S. I. Informática. Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain
  • Email: juanvi@us.es
  • M. A. Rojas-Medar
  • Affiliation: Grupo de Matemática Aplicada, Dpto. de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán, Chile
  • Email: marko@ueubiobio.cl.
  • Received by editor(s): August 31, 2009
  • Received by editor(s) in revised form: October 9, 2010
  • Published electronically: June 28, 2011
  • Additional Notes: The first author’s work was partially supported by project MTM2006-07932, Spain.
    The second author’s work was partially supported by project MTM2006-07932, Spain and Grant 1080628, Fondecyt-Chile.
  • © Copyright 2011 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Math. Comp. 81 (2012), 191-218
  • MSC (2010): Primary 35Q35, 65M12, 65M15, 76D05
  • DOI: https://doi.org/10.1090/S0025-5718-2011-02491-9
  • MathSciNet review: 2833492