Number fields with solvable Galois groups and small Galois root discriminants
HTML articles powered by AMS MathViewer
- by John W. Jones and Rachel Wallington;
- Math. Comp. 81 (2012), 555-567
- DOI: https://doi.org/10.1090/S0025-5718-2011-02511-1
- Published electronically: June 3, 2011
- PDF | Request permission
Abstract:
We apply class field theory to compute complete tables of number fields with Galois root discriminant less than $8\pi e^{\gamma }$. This includes all solvable Galois groups which appear in degree less than $10$, groups of order less than $24$, and all dihedral groups $D_p$ where $p$ is prime.References
- Rudolph E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer. Math. Soc. 46 (1939), 151–190 and Correction, 467 (1939). MR 84, DOI 10.1090/S0002-9947-1939-0000084-7
- Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
- P. Erdös, On the distribution of normal point groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 294–297. MR 2000, DOI 10.1073/pnas.26.4.294
- Claus Fieker and Jürgen Klüners, Minimal discriminants for fields with small Frobenius groups as Galois groups, J. Number Theory 99 (2003), no. 2, 318–337. MR 1968456, DOI 10.1016/S0022-314X(02)00071-9
- The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4, 2006, \verb+(http://www.gap-system.org)+.
- John W. Jones, Wild ramification bounds and simple group Galois extensions ramified only at 2, Proc. Amer. Math. Soc. 139 (2011), no. 3, 807–821. MR 2745634, DOI 10.1090/S0002-9939-2010-10628-7
- John W. Jones and David P. Roberts, Septic fields with discriminant $\pm 2^a3^b$, Math. Comp. 72 (2003), no. 244, 1975–1985. MR 1986816, DOI 10.1090/S0025-5718-03-01510-2
- John W. Jones and David P. Roberts, Galois number fields with small root discriminant, J. Number Theory 122 (2007), no. 2, 379–407. MR 2292261, DOI 10.1016/j.jnt.2006.05.001
- —, Website: Number fields with small grd, http://hobbes.la.asu.edu/lowgrd, 2007.
- The PARI Group, Bordeaux, Pari/gp, version 2.3.4, 2008.
- Robert Perlis, On the equation $\zeta _{K}(s)=\zeta _{K’}(s)$, J. Number Theory 9 (1977), no. 3, 342–360. MR 447188, DOI 10.1016/0022-314X(77)90070-1
- Leila Schneps, $\~D_4$ et $\hat D_4$ comme groupes de Galois, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 2, 33–36 (French, with English summary). MR 980080
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
- Jean-Pierre Serre, Œuvres. Vol. III, Springer-Verlag, Berlin, 1986 (French). 1972–1984. MR 926691
Bibliographic Information
- John W. Jones
- Affiliation: School of Mathematical and Statistical Sciences, Arizona State University, P.O. Box 871804, Tempe, Arizona 85287
- Email: jj@asu.edu
- Rachel Wallington
- Affiliation: School of Mathematical and Statistical Sciences, Arizona State University, P.O. Box 871804, Tempe, Arizona 85287
- Address at time of publication: Faith Christian School, P.O. Box 31300, Mesa, Arizona 85275
- Email: rwallington@faith-christian.org
- Received by editor(s): July 24, 2010
- Received by editor(s) in revised form: December 15, 2010
- Published electronically: June 3, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 555-567
- MSC (2010): Primary 11R21; Secondary 11R37
- DOI: https://doi.org/10.1090/S0025-5718-2011-02511-1
- MathSciNet review: 2833508