Analytical formulae for extended $_3F_2$-series of Watson–Whipple–Dixon with two extra integer parameters
HTML articles powered by AMS MathViewer
- by Wenchang Chu;
- Math. Comp. 81 (2012), 467-479
- DOI: https://doi.org/10.1090/S0025-5718-2011-02512-3
- Published electronically: June 30, 2011
- PDF | Request permission
Abstract:
By combining the linearization method with Dougall’s sum for well–poised $_5F_4$-series, we investigate the generalized Watson series with two extra integer parameters. Four analytical formulae are established, which can also be used to evaluate the extended Whipple and Dixon series via the Thomae transformation. Twelve concrete formulae are presented as exemplification.References
- W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
- S. M.P. Chaudhary, Certain summation formulae associated to Gauss second summation theorem, Global Journal of Science Frontier Research 10:3 (2010), 30–35.
- Junesang Choi, Arjun K. Rathie, and Shaloo Malani, A summation formula of $_6F_5(1)$, Commun. Korean Math. Soc. 19 (2004), no. 4, 775–778. MR 2096599, DOI 10.4134/CKMS.2004.19.4.775
- Junesang Choi, Arjun K. Rathie, and Bharti Bhojak, On Preece’s identity and other contiguous results, Commun. Korean Math. Soc. 20 (2005), no. 1, 169–178. MR 2167086, DOI 10.4134/CKMS.2005.20.1.169
- Wen Chang Chu, Inversion techniques and combinatorial identities: a quick introduction to hypergeometric evaluations, Runs and patterns in probability: selected papers, Math. Appl., vol. 283, Kluwer Acad. Publ., Dordrecht, 1994, pp. 31–57. MR 1292876
- A. C. Dixon, Summation of a certain series, Proc. London Math. Soc. (1) 35 (1903), 285–289.
- J. Dougall, On Vandermonde’s theorem and some more general expansions, Proc. Edinburgh Math. Soc. 25 (1907), 114–132.
- M. Jackson, A generalization of the theorems of Watson and Whipple on the sum of the series $_3F_2$, J. London Math. Soc. 24 (1949), 238–240. MR 32049, DOI 10.1112/jlms/s1-24.3.238
- J.-L. Lavoie, Some summation formulas for the series $_3F_2(1)$, Math. Comp. 49 (1987), no. 179, 269–274. MR 890268, DOI 10.1090/S0025-5718-1987-0890268-1
- J.-L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Watson’s theorem on the sum of a $_3F_2$, Indian J. Math. 34 (1992), no. 1, 23–32. MR 1211517
- J.-L. Lavoie, F. Grondin, A. K. Rathie, and K. Arora, Generalizations of Dixon’s theorem on the sum of a ${}_3\!F_2$, Math. Comp. 62 (1994), no. 205, 267–276. MR 1185246, DOI 10.1090/S0025-5718-1994-1185246-5
- J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Whipple’s theorem on the sum of a ${}_3F_2$, J. Comput. Appl. Math. 72 (1996), no. 2, 293–300. MR 1406215, DOI 10.1016/0377-0427(95)00279-0
- Stanisław Lewanowicz, Generalized Watson’s summation formula for $_3F_2(1)$, J. Comput. Appl. Math. 86 (1997), no. 2, 375–386. MR 1491313, DOI 10.1016/S0377-0427(97)00170-2
- M. Milgram, On hypergeometric $_3F_2(1)$, A review, ArXiv:math.CA/0603096; Updated version, 2009.
- Earl D. Rainville, Special functions, 1st ed., Chelsea Publishing Co., Bronx, NY, 1971. MR 393590
- Arjun K. Rathie and Medhat A. Rakha, A study of new hypergeometric transformations, J. Phys. A 41 (2008), no. 44, 445202, 15. MR 2453177, DOI 10.1088/1751-8113/41/44/445202
- Tibor K. Pogány and Arjun K. Rathie, Another derivation method of summation formulæfor the series $_3F_2(-1)$ and $_4F_3(1)$, Math. Maced. 5 (2007), 63–67. MR 2721608
- Arjun K. Rathie and R. B. Paris, A new proof of Watson’s theorem for the series $_3F_2(1)$, Appl. Math. Sci. (Ruse) 3 (2009), no. 1-4, 161–164. MR 2480594
- G. N. Watson, A note on generalized hypergeometric series, Proc. London Math. Soc. (2) 23 (1925), xiii-xv.
- F. J. W. Whipple, A group of generalized hypergeometric series: relations between 120 allied series of the type $F[a,b,c;d,e]$, Proc. London Math. Soc. (2) 23 (1925), 104-114.
- Jet Wimp, Irreducible recurrences and representation theorems for $_{3}F_{2}(1)$, Comput. Math. Appl. 9 (1983), no. 5, 669–678. MR 726815, DOI 10.1016/0898-1221(83)90124-4
- Doron Zeilberger, Gauss’s ${}_2F_1(1)$ cannot be generalized to ${}_2F_1(x)$, J. Comput. Appl. Math. 39 (1992), no. 3, 379–382. MR 1164298, DOI 10.1016/0377-0427(92)90211-F
Bibliographic Information
- Wenchang Chu
- Affiliation: Hangzhou Normal University, Institute of Combinatorial Mathematics, Hangzhou 310036, People’s Republic of China
- Address at time of publication: Dipartimento di Matematica, Università del Salento, Lecce–Arnesano, P.O. Box 193, Lecce 73100, Italy
- MR Author ID: 213991
- Email: chu.wenchang@unisalento.it
- Received by editor(s): October 8, 2010
- Received by editor(s) in revised form: November 30, 2010, and December 24, 2010
- Published electronically: June 30, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 467-479
- MSC (2010): Primary 33C20; Secondary 05A10
- DOI: https://doi.org/10.1090/S0025-5718-2011-02512-3
- MathSciNet review: 2833504