## A second-order overlapping Schwarz method for a 2D singularly perturbed semilinear reaction-diffusion problem

HTML articles powered by AMS MathViewer

- by Natalia Kopteva and Maria Pickett PDF
- Math. Comp.
**81**(2012), 81-105 Request permission

## Abstract:

An overlapping Schwarz domain decomposition is applied to a semilinear reaction-diffusion equation posed in a smooth two-dimensional domain. The problem may exhibit multiple solutions; its diffusion parameter $\varepsilon ^2$ is arbitrarily small, which induces boundary layers. The Schwarz method invokes a boundary-layer subdomain and an interior subdomain, the narrow subdomain overlap being of width $O(\varepsilon |\ln h|)$, where $h$ is the maximum side length of mesh elements, and the global number of mesh nodes does not exceed $O(h^{-2})$. We employ finite differences on layer-adapted meshes of Bakhvalov and Shishkin types in the boundary-layer subdomain, and lumped-mass linear finite elements on a quasiuniform Delaunay triangulation in the interior subdomain. For this iterative method, we present maximum norm error estimates for $\varepsilon \in (0,1]$. It is shown, in particular, that when $\varepsilon \le C|\ln h|^{-1}$, one iteration is sufficient to get second-order convergence (with, in the case of the Shishkin mesh, a logarithmic factor) in the maximum norm uniformly in $\varepsilon$. Numerical results are presented to support our theoretical conclusions.## References

- Vladimir B. Andreev and Natalia Kopteva,
*Pointwise approximation of corner singularities for a singularly perturbed reaction-diffusion equation in an $L$-shaped domain*, Math. Comp.**77**(2008), no. 264, 2125–2139. MR**2429877**, DOI 10.1090/S0025-5718-08-02106-6 - N. S. Bahvalov,
*On the optimization of the methods for solving boundary value problems in the presence of a boundary layer*, Ž. Vyčisl. Mat i Mat. Fiz.**9**(1969), 841–859 (Russian). MR**255066** - I. A. Blatov,
*On the Galerkin finite-element method for elliptic quasilinear singularly perturbed boundary value problems. I*, Differentsial′nye Uravneniya**28**(1992), no. 7, 1168–1177, 1285 (Russian, with Russian summary); English transl., Differential Equations**28**(1992), no. 7, 931–940 (1993). MR**1201213** - C. Clavero, J. L. Gracia, and E. O’Riordan,
*A parameter robust numerical method for a two dimensional reaction-diffusion problem*, Math. Comp.**74**(2005), no. 252, 1743–1758. MR**2164094**, DOI 10.1090/S0025-5718-05-01762-X - Paul C. Fife,
*Semilinear elliptic boundary value problems with small parameters*, Arch. Rational Mech. Anal.**52**(1973), 205–232. MR**374665**, DOI 10.1007/BF00247733 - B. Heinrich and K. Pönitz,
*Nitsche type mortaring for singularly perturbed reaction-diffusion problems*, Computing**75**(2005), no. 4, 257–279. MR**2173513**, DOI 10.1007/s00607-005-0123-5 - R. Bruce Kellogg and Natalia Kopteva,
*A singularly perturbed semilinear reaction-diffusion problem in a polygonal domain*, J. Differential Equations**248**(2010), no. 1, 184–208. MR**2557900**, DOI 10.1016/j.jde.2009.08.020 - Natalia Kopteva,
*Maximum norm error analysis of a 2D singularly perturbed semilinear reaction-diffusion problem*, Math. Comp.**76**(2007), no. 258, 631–646. MR**2291831**, DOI 10.1090/S0025-5718-06-01938-7 - Natalia Kopteva, Niall Madden, and Martin Stynes,
*Grid equidistribution for reaction-diffusion problems in one dimension*, Numer. Algorithms**40**(2005), no. 3, 305–322. MR**2189409**, DOI 10.1007/s11075-005-7079-6 - Natalia Kopteva, Maria Pickett, and Helen Purtill,
*A robust overlapping Schwarz method for a singularly perturbed semilinear reaction-diffusion problem with multiple solutions*, Int. J. Numer. Anal. Model.**6**(2009), no. 4, 680–695. MR**2574759** - Natalia Kopteva and Martin Stynes,
*Numerical analysis of a singularly perturbed nonlinear reaction-diffusion problem with multiple solutions*, Appl. Numer. Math.**51**(2004), no. 2-3, 273–288. MR**2091404**, DOI 10.1016/j.apnum.2004.07.001 - H.-O. Kreiss, T. A. Manteuffel, B. Swartz, B. Wendroff, and A. B. White Jr.,
*Supra-convergent schemes on irregular grids*, Math. Comp.**47**(1986), no. 176, 537–554. MR**856701**, DOI 10.1090/S0025-5718-1986-0856701-5 - Olga A. Ladyzhenskaya and Nina N. Ural’tseva,
*Linear and quasilinear elliptic equations*, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR**0244627** - Dmitriy Leykekhman,
*Uniform error estimates in the finite element method for a singularly perturbed reaction-diffusion problem*, Math. Comp.**77**(2008), no. 261, 21–39. MR**2353942**, DOI 10.1090/S0025-5718-07-02015-7 - J. Lorenz, Nonlinear singular perturbation problems and the Enquist-Osher scheme, Report 8115, Mathematical Institute, Catholic Univerity of Nijmegen, 1981 (unpublished).
- H. MacMullen, J. J. H. Miller, E. O’Riordan, and G. I. Shishkin,
*A second-order parameter-uniform overlapping Schwarz method for reaction-diffusion problems with boundary layers*, J. Comput. Appl. Math.**130**(2001), no. 1-2, 231–244. MR**1827983**, DOI 10.1016/S0377-0427(99)00380-5 - Jens M. Melenk,
*$hp$-finite element methods for singular perturbations*, Lecture Notes in Mathematics, vol. 1796, Springer-Verlag, Berlin, 2002. MR**1939620**, DOI 10.1007/b84212 - N. N. Nefedov,
*The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers*, Differ. Uravn.**31**(1995), no. 7, 1142–1149, 1268 (Russian, with Russian summary); English transl., Differential Equations**31**(1995), no. 7, 1077–1085 (1996). MR**1429769** - C. V. Pao,
*Monotone iterative methods for finite difference system of reaction-diffusion equations*, Numer. Math.**46**(1985), no. 4, 571–586. MR**796645**, DOI 10.1007/BF01389659 - Alfio Quarteroni and Alberto Valli,
*Domain decomposition methods for partial differential equations*, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR**1857663** - Hans-Görg Roos,
*A note on the conditioning of upwind schemes on Shishkin meshes*, IMA J. Numer. Anal.**16**(1996), no. 4, 529–538. MR**1414845**, DOI 10.1093/imanum/16.4.529 - A. A. Samarskiĭ,
*Teoriya raznostnykh skhem*, 3rd ed., “Nauka”, Moscow, 1989 (Russian, with Russian summary). MR**1196231** - A. H. Schatz and L. B. Wahlbin,
*On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions*, Math. Comp.**40**(1983), no. 161, 47–89. MR**679434**, DOI 10.1090/S0025-5718-1983-0679434-4 - G. I. Shishkin,
*Grid approximation of singularly perturbed elliptic and parabolic equations*, Ur. O. Ran, Ekaterinburg, 1992 (in Russian). - Meghan Stephens and Niall Madden,
*A parameter-uniform Schwarz method for a coupled system of reaction-diffusion equations*, J. Comput. Appl. Math.**230**(2009), no. 2, 360–370. MR**2532330**, DOI 10.1016/j.cam.2008.12.009 - Gilbert Strang and George J. Fix,
*An analysis of the finite element method*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR**0443377** - Guang Fu Sun and Martin Stynes,
*A uniformly convergent method for a singularly perturbed semilinear reaction-diffusion problem with multiple solutions*, Math. Comp.**65**(1996), no. 215, 1085–1109. MR**1351205**, DOI 10.1090/S0025-5718-96-00753-3 - Endre Süli,
*Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes*, SIAM J. Numer. Anal.**28**(1991), no. 5, 1419–1430. MR**1119276**, DOI 10.1137/0728073 - Vidar Thomée, Jinchao Xu, and Nai Ying Zhang,
*Superconvergence of the gradient in piecewise linear finite-element approximation to a parabolic problem*, SIAM J. Numer. Anal.**26**(1989), no. 3, 553–573. MR**997656**, DOI 10.1137/0726033 - Jinchao Xu and Ludmil Zikatanov,
*A monotone finite element scheme for convection-diffusion equations*, Math. Comp.**68**(1999), no. 228, 1429–1446. MR**1654022**, DOI 10.1090/S0025-5718-99-01148-5

## Additional Information

**Natalia Kopteva**- Affiliation: Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
- MR Author ID: 610720
- ORCID: 0000-0001-7477-6926
- Email: natalia.kopteva@ul.ie
**Maria Pickett**- Affiliation: Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
- Address at time of publication: Department of Mathematics, Lion Gate Building, Lion Terrace, Portsmouth, Hampshire PO1 3HF, United Kingdom
- Email: maria.pickett@port.ac.uk
- Received by editor(s): December 11, 2009
- Received by editor(s) in revised form: November 4, 2010
- Published electronically: July 18, 2011
- Additional Notes: This research was supported by an Irish Research Council for Science and Technology (IRCSET) postdoctoral fellowship and a Science Foundation Ireland grant under the Research Frontiers Programme 2008.
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**81**(2012), 81-105 - MSC (2010): Primary 65N06, 65N15, 65N30, 65N50, 65N55
- DOI: https://doi.org/10.1090/S0025-5718-2011-02521-4
- MathSciNet review: 2833488