Analysis of an adaptive Uzawa finite element method for the nonlinear Stokes problem
HTML articles powered by AMS MathViewer
- by Christian Kreuzer;
- Math. Comp. 81 (2012), 21-55
- DOI: https://doi.org/10.1090/S0025-5718-2011-02524-X
- Published electronically: May 11, 2011
- PDF | Request permission
Abstract:
We design and study an adaptive algorithm for the numerical solution of the stationary nonlinear Stokes problem. The algorithm can be interpreted as a disturbed steepest descent method, which generalizes Uzawa’s method to the nonlinear case. The outer iteration for the pressure is a descent method with fixed step-size. The inner iteration for the velocity consists of an approximate solution of a nonlinear Laplace equation, which is realized with adaptive linear finite elements. The descent direction is motivated by the quasi-norm which naturally arises as distance between velocities. We establish the convergence of the algorithm within the framework of descent direction methods.References
- Chérif Amrouche and Vivette Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 44(119) (1994), no. 1, 109–140. MR 1257940
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- Eberhard Bänsch, Local mesh refinement in $2$ and $3$ dimensions, Impact Comput. Sci. Engrg. 3 (1991), no. 3, 181–191. MR 1141298, DOI 10.1016/0899-8248(91)90006-G
- Eberhard Bänsch, Pedro Morin, and Ricardo H. Nochetto, An adaptive Uzawa FEM for the Stokes problem: convergence without the inf-sup condition, SIAM J. Numer. Anal. 40 (2002), no. 4, 1207–1229. MR 1951892, DOI 10.1137/S0036142901392134
- John W. Barrett and W. B. Liu, Finite element approximation of the $p$-Laplacian, Math. Comp. 61 (1993), no. 204, 523–537. MR 1192966, DOI 10.1090/S0025-5718-1993-1192966-4
- John W. Barrett and W. B. Liu, Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law, Numer. Math. 64 (1993), no. 4, 433–453. MR 1213411, DOI 10.1007/BF01388698
- John W. Barrett and W. B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68 (1994), no. 4, 437–456. MR 1301740, DOI 10.1007/s002110050071
- J. W. Barrett, J. A. Robson, and E. Süli, A posteriori error analysis of mixed finite element approximations to quasi-newtonian incompressible flows., Research Reports from the Numerical Analysis Group of the computing laboratory at Oxford University, UK NA-04/13 (2004), 1–16.
- L. Belenki, L. Diening, and C. Kreuzer, Optimality of an adaptive finite element method for the nonlinear $p$-Laplacian equation, Preprint Universität Duisburg-Essen 718 (2010), to appear IMA Journal of Numerical Analysis.
- Stefano Berrone and Endre Süli, Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows, IMA J. Numer. Anal. 28 (2008), no. 2, 382–421. MR 2401203, DOI 10.1093/imanum/drm017
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. MR 2421046, DOI 10.1137/07069047X
- Philippe G. Ciarlet, Introduction to numerical linear algebra and optimisation, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989. With the assistance of Bernadette Miara and Jean-Marie Thomas; Translated from the French by A. Buttigieg. MR 1015713
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Monique Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations, SIAM J. Math. Anal. 20 (1989), no. 1, 74–97. MR 977489, DOI 10.1137/0520006
- Lars Diening and Frank Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math. 20 (2008), no. 3, 523–556. MR 2418205, DOI 10.1515/FORUM.2008.027
- Stephan Dahlke, Reinhard Hochmuth, and Karsten Urban, Adaptive wavelet methods for saddle point problems, M2AN Math. Model. Numer. Anal. 34 (2000), no. 5, 1003–1022. MR 1837765, DOI 10.1051/m2an:2000113
- Lars Diening and Christian Kreuzer, Linear convergence of an adaptive finite element method for the $p$-Laplacian equation, SIAM J. Numer. Anal. 46 (2008), no. 2, 614–638. MR 2383205, DOI 10.1137/070681508
- L. Diening and M. Růžička, Interpolation operators in Orlicz-Sobolev spaces, Numer. Math. 107 (2007), no. 1, 107–129. MR 2317830, DOI 10.1007/s00211-007-0079-9
- Michael Růžička and Lars Diening, Non-Newtonian fluids and function spaces, NAFSA 8—Nonlinear analysis, function spaces and applications. Vol. 8, Czech. Acad. Sci., Prague, 2007, pp. 94–143. MR 2657118
- Lars Diening, Michael Růžička, and Katrin Schumacher, A decomposition technique for John domains, Ann. Acad. Sci. Fenn. Math. 35 (2010), no. 1, 87–114. MR 2643399, DOI 10.5186/aasfm.2010.3506
- Ivar Ekeland and Roger Temam, Convex analysis and variational problems, Studies in Mathematics and its Applications, Vol. 1, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976. Translated from the French. MR 463994
- Francesca Fierro and Andreas Veeser, A posteriori error estimators, gradient recovery by averaging, and superconvergence, Numer. Math. 103 (2006), no. 2, 267–298. MR 2222811, DOI 10.1007/s00211-005-0671-9
- Michel Fortin, Old and new finite elements for incompressible flows, Internat. J. Numer. Methods Fluids 1 (1981), no. 4, 347–364. MR 633812, DOI 10.1002/fld.1650010406
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Vakhtang Kokilashvili and Miroslav Krbec, Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1156767, DOI 10.1142/9789814360302
- Yaroslav Kondratyuk and Rob Stevenson, An optimal adaptive finite element method for the Stokes problem, SIAM J. Numer. Anal. 46 (2008), no. 2, 747–775. MR 2383210, DOI 10.1137/06066566X
- Igor Kossaczký, A recursive approach to local mesh refinement in two and three dimensions, J. Comput. Appl. Math. 55 (1994), no. 3, 275–288. MR 1329875, DOI 10.1016/0377-0427(94)90034-5
- M. A. Krasnosel’skij and Ya. B. Rutitskij, Convex functions and Orlicz spaces., Groningen, The Netherlands: P. Noordhoff, Ltd., 1961.
- C. Kreuzer, A convergent adaptive Uzawa finite element method for the nonlinear Stokes problem, Ph.D. thesis, Mathematisches Institut, Universität Augsburg, 2008.
- Joseph M. Maubach, Local bisection refinement for $n$-simplicial grids generated by reflection, SIAM J. Sci. Comput. 16 (1995), no. 1, 210–227. MR 1311687, DOI 10.1137/0916014
- Khamron Mekchay and Ricardo H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal. 43 (2005), no. 5, 1803–1827. MR 2192319, DOI 10.1137/04060929X
- William F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems, ACM Trans. Math. Software 15 (1989), no. 4, 326–347 (1990). MR 1062496, DOI 10.1145/76909.76912
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. MR 1770058, DOI 10.1137/S0036142999360044
- Pedro Morin, Kunibert G. Siebert, and Andreas Veeser, Convergence of finite elements adapted for weaker norms, Applied and industrial mathematics in Italy II, Ser. Adv. Math. Appl. Sci., vol. 75, World Sci. Publ., Hackensack, NJ, 2007, pp. 468–479. MR 2367592, DOI 10.1142/9789812709394_{0}041
- Pedro Morin, Kunibert G. Siebert, and Andreas Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci. 18 (2008), no. 5, 707–737. MR 2413035, DOI 10.1142/S0218202508002838
- Julian Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983. MR 724434, DOI 10.1007/BFb0072210
- Ricardo H. Nochetto and Jae-Hong Pyo, Optimal relaxation parameter for the Uzawa method, Numer. Math. 98 (2004), no. 4, 695–702. MR 2099317, DOI 10.1007/s00211-004-0522-0
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700
- Alfred Schmidt and Kunibert G. Siebert, Design of adaptive finite element software, Lecture Notes in Computational Science and Engineering, vol. 42, Springer-Verlag, Berlin, 2005. The finite element toolbox ALBERTA; With 1 CD-ROM (Unix/Linux). MR 2127659
- K. G. Siebert, A convergence proof for adaptive finite elements without lower bound, IMA Journal of Numerical Analysis, doi:10.1093/imanum/drq001, May 2010.
- A. Squillacote, Paraview Guide, Third edition, Kitware, Inc., 2008.
- Rob Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. MR 2324418, DOI 10.1007/s10208-005-0183-0
- Rob Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp. 77 (2008), no. 261, 227–241. MR 2353951, DOI 10.1090/S0025-5718-07-01959-X
- Andreas Veeser, Convergent adaptive finite elements for the nonlinear Laplacian, Numer. Math. 92 (2002), no. 4, 743–770. MR 1935808, DOI 10.1007/s002110100377
- R. Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989), no. 3, 309–325. MR 993474, DOI 10.1007/BF01390056
Bibliographic Information
- Christian Kreuzer
- Affiliation: Fakultät für Mathematik, Universität Duisburg-Essen, Forsthausweg 2, Duisburg, Germany 47057
- MR Author ID: 833122
- ORCID: 0000-0003-2923-4428
- Email: christian.kreuzer@uni-due.de
- Received by editor(s): December 16, 2009
- Received by editor(s) in revised form: January 22, 2011
- Published electronically: May 11, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 81 (2012), 21-55
- MSC (2010): Primary 65N30, 65N12, 35J60
- DOI: https://doi.org/10.1090/S0025-5718-2011-02524-X
- MathSciNet review: 2833486