Variational multiscale proper orthogonal decomposition: Convection-dominated convection-diffusion-reaction equations
Authors:
Traian Iliescu and Zhu Wang
Journal:
Math. Comp. 82 (2013), 1357-1378
MSC (2010):
Primary 76F65, 65M60; Secondary 76F20, 65M15
DOI:
https://doi.org/10.1090/S0025-5718-2013-02683-X
Published electronically:
March 18, 2013
MathSciNet review:
3042567
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We introduce a variational multiscale closure modeling strategy for the numerical stabilization of proper orthogonal decomposition reduced-order models of convection-dominated equations. As a first step, the new model is analyzed and tested for convection-dominated convection-diffusion-reaction equations. The numerical analysis of the finite element discretization of the model is presented. Numerical tests show the increased numerical accuracy over the standard reduced-order model and illustrate the theoretical convergence rates.
- 1. Nadine Aubry, Philip Holmes, John L. Lumley, and Emily Stone, The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech. 192 (1988), 115–173. MR 984943, https://doi.org/10.1017/S0022112088001818
- 2. Nadine Aubry, Wen Yu Lian, and Edriss S. Titi, Preserving symmetries in the proper orthogonal decomposition, SIAM J. Sci. Comput. 14 (1993), no. 2, 483–505. MR 1204243, https://doi.org/10.1137/0914030
- 3. Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg. 197 (2007), no. 1-4, 173–201. MR 2361475, https://doi.org/10.1016/j.cma.2007.07.016
- 4. M. Bergmann, C.-H. Bruneau, and A. Iollo, Enablers for robust POD models, J. Comput. Phys. 228 (2009), no. 2, 516–538. MR 2479934, https://doi.org/10.1016/j.jcp.2008.09.024
- 5. L. C. Berselli, T. Iliescu, and W. J. Layton, Mathematics of large eddy simulation of turbulent flows, Scientific Computation, Springer-Verlag, Berlin, 2006. MR 2185509
- 6.
J. Borggaard, A. Duggleby, A. Hay, T. Iliescu, and Z. Wang.
Reduced-order modeling of turbulent flows.
In Proceedings of MTNS 2008, 2008. - 7. Jeff Borggaard, Traian Iliescu, and Zhu Wang, Artificial viscosity proper orthogonal decomposition, Math. Comput. Modelling 53 (2011), no. 1-2, 269–279. MR 2739264, https://doi.org/10.1016/j.mcm.2010.08.015
- 8. Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258
- 9.
M. Buffoni, S. Camarri, A. Iollo, and M. V. Salvetti.
Low-dimensional modelling of a confined three-dimensional wake flow.
J. Fluid Mech., 569:141-150, 2006. - 10. Saifon Chaturantabut and Danny C. Sorensen, A state space error estimate for POD-DEIM nonlinear model reduction, SIAM J. Numer. Anal. 50 (2012), no. 1, 46–63. MR 2888303, https://doi.org/10.1137/110822724
- 11. James W. Demmel, Applied numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1463942
- 12. Volker Gravemeier, A consistent dynamic localization model for large eddy simulation of turbulent flows based on a variational formulation, J. Comput. Phys. 218 (2006), no. 2, 677–701. MR 2269381, https://doi.org/10.1016/j.jcp.2006.03.001
- 13. Volker Gravemeier, Wolfgang A. Wall, and Ekkehard Ramm, A three-level finite element method for the instationary incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 15-16, 1323–1366. MR 2068898, https://doi.org/10.1016/j.cma.2003.12.027
- 14. Jean-Luc Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1293–1316. MR 1736900, https://doi.org/10.1051/m2an:1999145
- 15. Jean-Luc Guermond, Stabilisation par viscosité de sous-maille pour l’approximation de Galerkin des opérateurs linéaires monotones, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 7, 617–622 (French, with English and French summaries). MR 1680045, https://doi.org/10.1016/S0764-4442(99)80257-2
- 16. N. Heitmann, Subgridscale stabilization of time-dependent convection dominated diffusive transport, J. Math. Anal. Appl. 331 (2007), no. 1, 38–50. MR 2305986, https://doi.org/10.1016/j.jmaa.2006.08.049
- 17. Philip Holmes, John L. Lumley, and Gal Berkooz, Turbulence, coherent structures, dynamical systems and symmetry, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 1996. MR 1422658
- 18. Chris Homescu, Linda R. Petzold, and Radu Serban, Error estimation for reduced-order models of dynamical systems, SIAM J. Numer. Anal. 43 (2005), no. 4, 1693–1714. MR 2182145, https://doi.org/10.1137/040603541
- 19. Thomas J. R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg. 127 (1995), no. 1-4, 387–401. MR 1365381, https://doi.org/10.1016/0045-7825(95)00844-9
- 20.
T. J. R. Hughes, L. Mazzei, and K. E. Jansen.
Large eddy simulation and the variational multiscale method.
Comput. Vis. Sci., 3:47-59, 2000. - 21.
T. J. R. Hughes, L. Mazzei, A. Oberai, and A. Wray.
The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence.
Phys. Fluids, 13(2):505-512, 2001. - 22.
T. J. R. Hughes, A. Oberai, and L. Mazzei.
Large eddy simulation of turbulent channel flows by the variational multiscale method.
Phys. Fluids, 13(6):1784-1799, 2001. - 23. Volker John and Songul Kaya, A finite element variational multiscale method for the Navier-Stokes equations, SIAM J. Sci. Comput. 26 (2005), no. 5, 1485–1503. MR 2142582, https://doi.org/10.1137/030601533
- 24. Volker John and Songul Kaya, Finite element error analysis of a variational multiscale method for the Navier-Stokes equations, Adv. Comput. Math. 28 (2008), no. 1, 43–61. MR 2358041, https://doi.org/10.1007/s10444-005-9010-z
- 25. V. John, S. Kaya, and A. Kindl, Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity, J. Math. Anal. Appl. 344 (2008), no. 2, 627–641. MR 2426294, https://doi.org/10.1016/j.jmaa.2008.03.015
- 26. Volker John, Songul Kaya, and William Layton, A two-level variational multiscale method for convection-dominated convection-diffusion equations, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 33-36, 4594–4603. MR 2229851, https://doi.org/10.1016/j.cma.2005.10.006
- 27. Songul Kaya, Numerical analysis of a variational multiscale method for turbulence, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–University of Pittsburgh. MR 2706848
- 28. K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optim. Theory Appl. 102 (1999), no. 2, 345–371. MR 1706822, https://doi.org/10.1023/A:1021732508059
- 29. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math. 90 (2001), no. 1, 117–148. MR 1868765, https://doi.org/10.1007/s002110100282
- 30. W. Layton, A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput. 133 (2002), no. 1, 147–157. MR 1923189, https://doi.org/10.1016/S0096-3003(01)00228-4
- 31. Zhendong Luo, Jing Chen, I. M. Navon, and Xiaozhong Yang, Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations, SIAM J. Numer. Anal. 47 (2008/09), no. 1, 1–19. MR 2452849, https://doi.org/10.1137/070689498
- 32. ZhenDong Luo, Jing Chen, Ping Sun, and XiaoZhong Yang, Finite element formulation based on proper orthogonal decomposition for parabolic equations, Sci. China Ser. A 52 (2009), no. 3, 585–596. MR 2491775, https://doi.org/10.1007/s11425-008-0125-9
- 33. Bernd R. Noack, Konstantin Afanasiev, Marek Morzynski, Gilead Tadmor, and Frank Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech. 497 (2003), 335–363. MR 2033852, https://doi.org/10.1017/S0022112003006694
- 34.
B. Podvin.
On the adequacy of the ten-dimensional model for the wall layer.
Phys. Fluids, 13(1):210-224, 2001. - 35. Alfio Quarteroni and Alberto Valli, Numerical approximation of partial differential equations, Springer Series in Computational Mathematics, vol. 23, Springer-Verlag, Berlin, 1994. MR 1299729
- 36. Ekkehard W. Sachs and Matthias Schu, Reduced order models in PIDE constrained optimization, Control Cybernet. 39 (2010), no. 3, 661–675. MR 2791366
- 37. S. Sirisup and G. E. Karniadakis, A spectral viscosity method for correcting the long-term behavior of POD models, J. Comput. Phys. 194 (2004), no. 1, 92–116. MR 2033384, https://doi.org/10.1016/j.jcp.2003.08.021
- 38. Lawrence Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures, Quart. Appl. Math. 45 (1987), no. 3, 561–571. MR 910462, https://doi.org/10.1090/S0033-569X-1987-0910462-6
- 39.
J. S. Smagorinsky.
General circulation experiments with the primitive equations.
Mon. Weather Rev., 91:99-164, 1963. - 40. Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024
- 41. Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu, Two-level discretizations of nonlinear closure models for proper orthogonal decomposition, J. Comput. Phys. 230 (2011), no. 1, 126–146. MR 2734284, https://doi.org/10.1016/j.jcp.2010.09.015
- 42. Zhu Wang, Imran Akhtar, Jeff Borggaard, and Traian Iliescu, Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Comput. Methods Appl. Mech. Engrg. 237/240 (2012), 10–26. MR 2942830, https://doi.org/10.1016/j.cma.2012.04.015
Retrieve articles in Mathematics of Computation with MSC (2010): 76F65, 65M60, 76F20, 65M15
Retrieve articles in all journals with MSC (2010): 76F65, 65M60, 76F20, 65M15
Additional Information
Traian Iliescu
Affiliation:
Department of Mathematics, Virginia Polytechnic Institute and State University, 456 McBryde Hall, Blacksburg, Virginia 24061
Email:
iliescu@vt.edu
Zhu Wang
Affiliation:
Department of Mathematics, Virginia Polytechnic Institute and State University, 407E McBryde Hall, Blacksburg, Virginia 24061
Email:
wangzhu@vt.edu
DOI:
https://doi.org/10.1090/S0025-5718-2013-02683-X
Keywords:
Proper orthogonal decomposition,
variational multiscale
Received by editor(s):
November 23, 2010
Received by editor(s) in revised form:
December 2, 2011
Published electronically:
March 18, 2013
Additional Notes:
The first author was supported in part by NSF Grants #DMS-0513542 and #OCE-0620464 and AFOSR grant #FA9550-08-1-0136
The second author was supported in part by NSF Grants #DMS-0513542 and #OCE-0620464 and AFOSR grant #FA9550-08-1-0136.
Article copyright:
© Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.