The Fermat-type equations $x^5 + y^5 = 2z^p$ or $3z^p$ solved through $\mathbb {Q}$-curves
HTML articles powered by AMS MathViewer
- by Luis Dieulefait and Nuno Freitas;
- Math. Comp. 83 (2014), 917-933
- DOI: https://doi.org/10.1090/S0025-5718-2013-02731-7
- Published electronically: June 10, 2013
- PDF | Request permission
Abstract:
We solve the Diophantine equations $x^5 + y^5 = dz^p$ with $d=2, 3$ for a set of prime numbers of density $3/4$. The method consists of relating a possible solution to another Diophantine equation and solving the latter via a generalized modular technique. Indeed, we will apply a multi-Frey technique with two $\mathbb {Q}$-curves along with a new technique for eliminating newforms.References
- Nicolas Billerey, Équations de Fermat de type $(5,5,p)$, Bull. Austral. Math. Soc. 76 (2007), no. 2, 161–194 (French, with French summary). MR 2353205, DOI 10.1017/S0004972700039575
- Nicolas Billerey and Luis V. Dieulefait, Solving Fermat-type equations $x^5+y^5=dz^p$, Math. Comp. 79 (2010), no. 269, 535–544. MR 2552239, DOI 10.1090/S0025-5718-09-02294-7
- Henri Carayol, Sur les représentations galoisiennes modulo $l$ attachées aux formes modulaires, Duke Math. J. 59 (1989), no. 3, 785–801 (French). MR 1046750, DOI 10.1215/S0012-7094-89-05937-1
- Imin Chen, On the equation $a^2+b^{2p}=c^5$, Acta Arith. 143 (2010), no. 4, 345–375. MR 2652585, DOI 10.4064/aa143-4-3
- I. Chen and M. Bennett. Multi-Frey $\mathbb {Q}$-curves and the Diophantine equation $a^2 + b^6 = c^p$. http://people.math.sfu.ca/~ichen/pub/BeCh2.pdf.
- L. Dieulefait and J. Jiménez. Solving Fermat-type equations $x^4 + d y^2 = z^p$ via modular $\mathbb {Q}$-curves over polyquadratic fields. J. Reine Angew. Math., 633:183–196, 2009.
- Jordan S. Ellenberg, Galois representations attached to $\Bbb Q$-curves and the generalized Fermat equation $A^4+B^2=C^p$, Amer. J. Math. 126 (2004), no. 4, 763–787. MR 2075481
- J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177–190. MR 330174, DOI 10.1007/BF01425446
- Ioannis Papadopoulos, Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle $2$ et $3$, J. Number Theory 44 (1993), no. 2, 119–152 (French, with French summary). MR 1225948, DOI 10.1006/jnth.1993.1040
- Elisabeth E. Pyle, Abelian varieties over $\Bbb Q$ with large endomorphism algebras and their simple components over $\overline {\Bbb Q}$, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 189–239. MR 2058652
- Jordi Quer, $\textbf {Q}$-curves and abelian varieties of $\textrm {GL}_2$-type, Proc. London Math. Soc. (3) 81 (2000), no. 2, 285–317. MR 1770611, DOI 10.1112/S0024611500012570
- Jordi Quer, Embedding problems over abelian groups and an application to elliptic curves, J. Algebra 237 (2001), no. 1, 186–202. MR 1813898, DOI 10.1006/jabr.2000.8578
- Kenneth A. Ribet, Abelian varieties over $\bf Q$ and modular forms, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 241–261. MR 2058653, DOI 10.1007/978-3-0348-7919-4_{1}5
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, A multi-Frey approach to some multi-parameter families of Diophantine equations, Canad. J. Math. 60 (2008), no. 3, 491–519. MR 2414954, DOI 10.4153/CJM-2008-024-9
Bibliographic Information
- Luis Dieulefait
- Affiliation: Department of Algebra and Geometry, University of Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
- MR Author ID: 671876
- Nuno Freitas
- Affiliation: Department of Algebra and Geometry, University of Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
- MR Author ID: 1044711
- Received by editor(s): May 24, 2011
- Received by editor(s) in revised form: November 26, 2011, December 15, 2011, January 13, 2012, March 6, 2012, and June 2, 2012
- Published electronically: June 10, 2013
- Additional Notes: The first author’s research was supported by project MICINN MTM2009-07024 from MECD, Spain; and ICREA Academia Research Prize.
The second author’s research was supported by a scholarship from Fundaçao para a Ciência e a Tecnologia, Portugal, reference no. $SFRH/BD/44283/2008$. - © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 83 (2014), 917-933
- MSC (2010): Primary 11D41
- DOI: https://doi.org/10.1090/S0025-5718-2013-02731-7
- MathSciNet review: 3143698