Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems
HTML articles powered by AMS MathViewer
- by Yanzhao Cao, Max Gunzburger, Xiaoming He and Xiaoming Wang;
- Math. Comp. 83 (2014), 1617-1644
- DOI: https://doi.org/10.1090/S0025-5718-2014-02779-8
- Published electronically: February 3, 2014
- PDF | Request permission
Abstract:
Two parallel, non-iterative, multi-physics, domain decomposition methods are proposed to solve a coupled time-dependent Stokes-Darcy system with the Beavers-Joseph-Saffman-Jones interface condition. For both methods, spatial discretization is effected using finite element methods. The backward Euler method and a three-step backward differentiation method are used for the temporal discretization. Results obtained at previous time steps are used to approximate the coupling information on the interface between the Darcy and Stokes subdomains at the current time step. Hence, at each time step, only a single Stokes and a single Darcy problem need be solved; as these are uncoupled, they can be solved in parallel. The unconditional stability and convergence of the first method is proved and also illustrated through numerical experiments. The improved temporal convergence and unconditional stability of the second method is also illustrated through numerical experiments.References
- M. Amara, D. Capatina, and L. Lizaik, Coupling of Darcy-Forchheimer and compressible Navier-Stokes equations with heat transfer, SIAM J. Sci. Comput. 31 (2008/09), no. 2, 1470–1499. MR 2486839, DOI 10.1137/070709517
- Todd Arbogast and Dana S. Brunson, A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium, Comput. Geosci. 11 (2007), no. 3, 207–218. MR 2344200, DOI 10.1007/s10596-007-9043-0
- Ivo Babuška and Gabriel N. Gatica, A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem, SIAM J. Numer. Anal. 48 (2010), no. 2, 498–523. MR 2646106, DOI 10.1137/080727646
- Lori Badea, Marco Discacciati, and Alfio Quarteroni, Numerical analysis of the Navier-Stokes/Darcy coupling, Numer. Math. 115 (2010), no. 2, 195–227. MR 2606960, DOI 10.1007/s00211-009-0279-6
- Santiago Badia and Ramon Codina, Unified stabilized finite element formulations for the Stokes and the Darcy problems, SIAM J. Numer. Anal. 47 (2009), no. 3, 1971–2000. MR 2519591, DOI 10.1137/08072632X
- Garth A. Baker, Vassilios A. Dougalis, and Ohannes A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math. Comp. 39 (1982), no. 160, 339–375. MR 669634, DOI 10.1090/S0025-5718-1982-0669634-0
- Christine Bernardi, Frédéric Hecht, and Fatma Zohra Nouri, A new finite-element discretization of the Stokes problem coupled with the Darcy equations, IMA J. Numer. Anal. 30 (2010), no. 1, 61–93. MR 2580547, DOI 10.1093/imanum/drn054
- Christine Bernardi, Frédéric Hecht, and Olivier Pironneau, Coupling Darcy and Stokes equations for porous media with cracks, M2AN Math. Model. Numer. Anal. 39 (2005), no. 1, 7–35. MR 2136198, DOI 10.1051/m2an:2005007
- Christine Bernardi, Tomás Chacón Rebollo, Frédéric Hecht, and Zoubida Mghazli, Mortar finite element discretization of a model coupling Darcy and Stokes equations, M2AN Math. Model. Numer. Anal. 42 (2008), no. 3, 375–410. MR 2423791, DOI 10.1051/m2an:2008009
- Yassine Boubendir and Svetlana Tlupova, Stokes-Darcy boundary integral solutions using preconditioners, J. Comput. Phys. 228 (2009), no. 23, 8627–8641. MR 2558769, DOI 10.1016/j.jcp.2009.08.014
- James H. Bramble and J. Thomas King, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math. 6 (1996), no. 2, 109–138 (1997). MR 1431789, DOI 10.1007/BF02127700
- J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103–134. MR 842125, DOI 10.1090/S0025-5718-1986-0842125-3
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Erik Burman and Peter Hansbo, Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem, Numer. Methods Partial Differential Equations 21 (2005), no. 5, 986–997. MR 2154230, DOI 10.1002/num.20076
- Erik Burman and Peter Hansbo, A unified stabilized method for Stokes’ and Darcy’s equations, J. Comput. Appl. Math. 198 (2007), no. 1, 35–51. MR 2250387, DOI 10.1016/j.cam.2005.11.022
- Mingchao Cai, Mo Mu, and Jinchao Xu, Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal. 47 (2009), no. 5, 3325–3338. MR 2551196, DOI 10.1137/080721868
- Mingchao Cai, Mo Mu, and Jinchao Xu, Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications, J. Comput. Appl. Math. 233 (2009), no. 2, 346–355. MR 2568530, DOI 10.1016/j.cam.2009.07.029
- Xiao-Chuan Cai, Multiplicative Schwarz methods for parabolic problems, SIAM J. Sci. Comput. 15 (1994), no. 3, 587–603. Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992). MR 1273154, DOI 10.1137/0915039
- Yanzhao Cao, Max Gunzburger, Xiaoming He, and Xiaoming Wang, Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition, Numer. Math. 117 (2011), no. 4, 601–629. MR 2776912, DOI 10.1007/s00211-011-0361-8
- Yanzhao Cao, Max Gunzburger, Xiaolong Hu, Fei Hua, Xiaoming Wang, and Weidong Zhao, Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal. 47 (2010), no. 6, 4239–4256. MR 2585186, DOI 10.1137/080731542
- Yanzhao Cao, Max Gunzburger, Fei Hua, and Xiaoming Wang, Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition, Commun. Math. Sci. 8 (2010), no. 1, 1–25. MR 2655899, DOI 10.4310/CMS.2010.v8.n1.a2
- A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow, J. Numer. Math. 16 (2008), no. 4, 249–280. MR 2493168, DOI 10.1515/JNUM.2008.012
- Ayçıl Çeşmelioğlu and Béatrice Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow, J. Sci. Comput. 40 (2009), no. 1-3, 115–140. MR 2511730, DOI 10.1007/s10915-009-9274-4
- P. Chatzipantelidis, R. D. Lazarov, V. Thomée, and L. B. Wahlbin, Parabolic finite element equations in nonconvex polygonal domains, BIT 46 (2006), no. suppl., S113–S143. MR 2283311, DOI 10.1007/s10543-006-0087-7
- Nan Chen, Max Gunzburger, and Xiaoming Wang, Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system, J. Math. Anal. Appl. 368 (2010), no. 2, 658–676. MR 2643831, DOI 10.1016/j.jmaa.2010.02.022
- Wenbin Chen, Puying Chen, Max Gunzburger, and Ningning Yan, Superconvergence analysis of FEMs for the Stokes-Darcy system, Math. Methods Appl. Sci. 33 (2010), no. 13, 1605–1617. MR 2680670, DOI 10.1002/mma.1279
- Wenbin Chen, Max Gunzburger, Fei Hua, and Xiaoming Wang, A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal. 49 (2011), no. 3, 1064–1084. MR 2812558, DOI 10.1137/080740556
- Yumei Chen, Feiteng Huang, and Xiaoping Xie, $H(\rm div)$ conforming finite element methods for the coupled Stokes and Darcy problem, J. Comput. Appl. Math. 235 (2011), no. 15, 4337–4349. MR 2802009, DOI 10.1016/j.cam.2011.03.023
- Zhiming Chen and Jun Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998), no. 2, 175–202. MR 1622502, DOI 10.1007/s002110050336
- Prince Chidyagwai and Béatrice Rivière, On the solution of the coupled Navier-Stokes and Darcy equations, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 47-48, 3806–3820. MR 2557499, DOI 10.1016/j.cma.2009.08.012
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Ming Cui and Ningning Yan, A posteriori error estimate for the Stokes-Darcy system, Math. Methods Appl. Sci. 34 (2011), no. 9, 1050–1064. MR 2829467, DOI 10.1002/mma.1422
- Mark C. Curran, An iterative finite-element collocation method for parabolic problems using domain decomposition, Domain decomposition methods in science and engineering (Como, 1992) Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 245–253. MR 1262624, DOI 10.1090/conm/157/01424
- Carlo D’Angelo and Paolo Zunino, Robust numerical approximation of coupled Stokes’ and Darcy’s flows applied to vascular hemodynamics and biochemical transport, ESAIM Math. Model. Numer. Anal. 45 (2011), no. 3, 447–476. MR 2804646, DOI 10.1051/m2an/2010062
- Daoud S. Daoud and Bruce A. Wade, A two-stage multi-splitting method for non-overlapping domain decomposition for parabolic equations, Domain decomposition methods in sciences and engineering (Chiba, 1999) DDM.org, Augsburg, 2001, pp. 101–108. MR 1827527
- Clint Dawson, Analysis of discontinuous finite element methods for ground water/surface water coupling, SIAM J. Numer. Anal. 44 (2006), no. 4, 1375–1404. MR 2257109, DOI 10.1137/050639405
- Clint N. Dawson, Qiang Du, and Todd F. Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation, Math. Comp. 57 (1991), no. 195, 63–71. MR 1079011, DOI 10.1090/S0025-5718-1991-1079011-4
- Clint N. Dawson and Todd F. Dupont, Explicit/implicit conservative Galerkin domain decomposition procedures for parabolic problems, Math. Comp. 58 (1992), no. 197, 21–34. MR 1106964, DOI 10.1090/S0025-5718-1992-1106964-9
- Clint N. Dawson and Todd F. Dupont, Explicit/implicit, conservative domain decomposition procedures for parabolic problems based on block-centered finite differences, SIAM J. Numer. Anal. 31 (1994), no. 4, 1045–1061. MR 1286216, DOI 10.1137/0731055
- M. Discacciati, Domain decomposition methods for the coupling of surface and groundwater flows, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2004.
- Marco Discacciati, Iterative methods for Stokes/Darcy coupling, Domain decomposition methods in science and engineering, Lect. Notes Comput. Sci. Eng., vol. 40, Springer, Berlin, 2005, pp. 563–570. MR 2236665, DOI 10.1007/3-540-26825-1_{5}9
- Marco Discacciati, Edie Miglio, and Alfio Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math. 43 (2002), no. 1-2, 57–74. 19th Dundee Biennial Conference on Numerical Analysis (2001). MR 1936102, DOI 10.1016/S0168-9274(02)00125-3
- M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, Numerical mathematics and advanced applications, Springer Italia, Milan, 2003, pp. 3–20. MR 2360703
- Marco Discacciati and Alfio Quarteroni, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Vis. Sci. 6 (2004), no. 2-3, 93–103. MR 2061270, DOI 10.1007/s00791-003-0113-0
- Marco Discacciati, Alfio Quarteroni, and Alberto Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal. 45 (2007), no. 3, 1246–1268. MR 2318811, DOI 10.1137/06065091X
- Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575–626. MR 277126, DOI 10.1137/0707048
- Maksymilian Dryja, Substructuring methods for parabolic problems, Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Moscow, 1990) SIAM, Philadelphia, PA, 1991, pp. 264–271. MR 1106468
- Maksymilian Dryja and Xuemin Tu, A domain decomposition discretization of parabolic problems, Numer. Math. 107 (2007), no. 4, 625–640. MR 2342646, DOI 10.1007/s00211-007-0103-0
- V. J. Ervin, E. W. Jenkins, and S. Sun, Coupled generalized nonlinear Stokes flow with flow through a porous medium, SIAM J. Numer. Anal. 47 (2009), no. 2, 929–952. MR 2485439, DOI 10.1137/070708354
- V. J. Ervin, E. W. Jenkins, and S. Sun, Coupling nonlinear Stokes and Darcy flow using mortar finite elements, Appl. Numer. Math. 61 (2011), no. 11, 1198–1222. MR 2842139, DOI 10.1016/j.apnum.2011.08.002
- Min-fu Feng, Rui-sheng Qi, Rui Zhu, and Bing-tao Ju, Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem, Appl. Math. Mech. (English Ed.) 31 (2010), no. 3, 393–404. MR 2655474, DOI 10.1007/s10483-010-0312-z
- Juan Galvis and Marcus Sarkis, Balancing domain decomposition methods for mortar coupling Stokes-Darcy systems, Domain decomposition methods in science and engineering XVI, Lect. Notes Comput. Sci. Eng., vol. 55, Springer, Berlin, 2007, pp. 373–380. MR 2334125, DOI 10.1007/978-3-540-34469-8_{4}6
- Juan Galvis and Marcus Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations, Electron. Trans. Numer. Anal. 26 (2007), 350–384. MR 2391227
- Juan Galvis and Marcus Sarkis, FETI and BDD preconditioners for Stokes-Mortar-Darcy systems, Commun. Appl. Math. Comput. Sci. 5 (2010), no. 1, 1–30. MR 2600819, DOI 10.2140/camcos.2010.5.1
- Martin J. Gander, Laurence Halpern, and Frederic Nataf, Optimized Schwarz methods, Domain decomposition methods in sciences and engineering (Chiba, 1999) DDM.org, Augsburg, 2001, pp. 15–27. MR 1827519
- Gabriel N. Gatica, Salim Meddahi, and Ricardo Oyarzúa, A conforming mixed finite-element method for the coupling of fluid flow with porous media flow, IMA J. Numer. Anal. 29 (2009), no. 1, 86–108. MR 2470941, DOI 10.1093/imanum/drm049
- Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas, A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled problem, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 21-22, 1877–1891. MR 2787543, DOI 10.1016/j.cma.2011.02.009
- Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas, Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem, Numer. Methods Partial Differential Equations 27 (2011), no. 3, 721–748. MR 2809968, DOI 10.1002/num.20548
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Vivette Girault and Béatrice Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM J. Numer. Anal. 47 (2009), no. 3, 2052–2089. MR 2519594, DOI 10.1137/070686081
- James K. Guest and Jean H. Prévost, Topology optimization of creeping fluid flows using a Darcy-Stokes finite element, Internat. J. Numer. Methods Engrg. 66 (2006), no. 3, 461–484. MR 2222192, DOI 10.1002/nme.1560
- Max D. Gunzburger, On the stability of Galerkin methods for initial-boundary value problems for hyperbolic systems, Math. Comp. 31 (1977), no. 139, 661–675. MR 436624, DOI 10.1090/S0025-5718-1977-0436624-0
- Max D. Gunzburger, Finite element methods for viscous incompressible flows, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1989. A guide to theory, practice, and algorithms. MR 1017032
- Ronald H. W. Hoppe, Paulo Porta, and Yuri Vassilevski, Computational issues related to iterative coupling of subsurface and channel flows, Calcolo 44 (2007), no. 1, 1–20. MR 2301278, DOI 10.1007/s10092-007-0126-z
- Fei (Neil) Hua, Modeling, analysis and simulation of the Stokes-Darcy system with Beavers-Joseph interface condition, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–The Florida State University. MR 2714080
- Willi Jäger and Andro Mikelić, On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math. 60 (2000), no. 4, 1111–1127. MR 1760028, DOI 10.1137/S003613999833678X
- Bin Jiang, A parallel domain decomposition method for coupling of surface and groundwater flows, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 9-12, 947–957. MR 2498862, DOI 10.1016/j.cma.2008.11.001
- I. Jones, Low Reynolds number flow past a porous spherical shell, Proc. Camb. Phil. Soc. 73 (1973), 231–238.
- Younbae Jun and Tsun-Zee Mai, ADI method—domain decomposition, Appl. Numer. Math. 56 (2006), no. 8, 1092–1107. MR 2234842, DOI 10.1016/j.apnum.2005.09.008
- Younbae Jun and Tsun-Zee Mai, IPIC domain decomposition algorithm for parabolic problems, Appl. Math. Comput. 177 (2006), no. 1, 352–364. MR 2234525, DOI 10.1016/j.amc.2005.11.017
- G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow, J. Comput. Phys. 229 (2010), no. 17, 5933–5943. MR 2657851, DOI 10.1016/j.jcp.2010.04.021
- Trygve Karper, Kent-Andre Mardal, and Ragnar Winther, Unified finite element discretizations of coupled Darcy-Stokes flow, Numer. Methods Partial Differential Equations 25 (2009), no. 2, 311–326. MR 2483769, DOI 10.1002/num.20349
- Sondes Khabthani, Lassaad Elasmi, and François Feuillebois, Perturbation solution of the coupled Stokes-Darcy problem, Discrete Contin. Dyn. Syst. Ser. B 15 (2011), no. 4, 971–990. MR 2786363, DOI 10.3934/dcdsb.2011.15.971
- Yu. A. Kuznetsov, Overlapping domain decomposition methods for parabolic problems, Domain decomposition methods in science and engineering (Como, 1992) Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 63–69. MR 1262606, DOI 10.1090/conm/157/01406
- William Layton, Hoang Tran, and Xin Xiong, Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems, J. Comput. Appl. Math. 236 (2012), no. 13, 3198–3217. MR 2912685, DOI 10.1016/j.cam.2012.02.019
- William J. Layton, Friedhelm Schieweck, and Ivan Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 40 (2002), no. 6, 2195–2218 (2003). MR 1974181, DOI 10.1137/S0036142901392766
- Jingzhi Li, Jens Markus Melenk, Barbara Wohlmuth, and Jun Zou, Optimal a priori estimates for higher order finite elements for elliptic interface problems, Appl. Numer. Math. 60 (2010), no. 1-2, 19–37. MR 2566075, DOI 10.1016/j.apnum.2009.08.005
- Li Shan, Haibiao Zheng, and William J. Layton, A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model, Numer. Methods Partial Differential Equations 29 (2013), no. 2, 549–583. MR 3022899, DOI 10.1002/num.21720
- P.-L. Lions, On the Schwarz alternating method. I, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 1–42. MR 972510
- P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdomains, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989) SIAM, Philadelphia, PA, 1990, pp. 202–223. MR 1064345
- Kent Andre Mardal, Xue-Cheng Tai, and Ragnar Winther, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal. 40 (2002), no. 5, 1605–1631. MR 1950614, DOI 10.1137/S0036142901383910
- Arif Masud, A stabilized mixed finite element method for Darcy-Stokes flow, Internat. J. Numer. Methods Fluids 54 (2007), no. 6-8, 665–681. MR 2333004, DOI 10.1002/fld.1508
- Mo Mu and Jinchao Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 45 (2007), no. 5, 1801–1813. MR 2346360, DOI 10.1137/050637820
- Mo Mu and Xiaohong Zhu, Decoupled schemes for a non-stationary mixed Stokes-Darcy model, Math. Comp. 79 (2010), no. 270, 707–731. MR 2600540, DOI 10.1090/S0025-5718-09-02302-3
- Steffen Münzenmaier and Gerhard Starke, First-order system least squares for coupled Stokes-Darcy flow, SIAM J. Numer. Anal. 49 (2011), no. 1, 387–404. MR 2783231, DOI 10.1137/100805108
- V. Nassehi and J. Petera, A new least-squares finite element model for combined Navier-Stokes and Darcy flows in geometrically complicated domains with solid and porous boundaries, Internat. J. Numer. Methods Engrg. 37 (1994), no. 9, 1609–1620. MR 1274560, DOI 10.1002/nme.1620370912
- Weihong Peng, Guohua Cao, Dongzhengzhu, and Shuncai Li, Darcy-Stokes equations with finite difference and natural boundary element coupling method, CMES Comput. Model. Eng. Sci. 75 (2011), no. 3-4, 173–188. MR 2867757
- Peter Popov, Yalchin Efendiev, and Guan Qin, Multiscale modeling and simulations of flows in naturally fractured Karst reservoirs, Commun. Comput. Phys. 6 (2009), no. 1, 162–184. MR 2537310, DOI 10.4208/cicp.2009.v6.p162
- Lizhen Qin and Xuejun Xu, Optimized Schwarz methods with Robin transmission conditions for parabolic problems, SIAM J. Sci. Comput. 31 (2008), no. 1, 608–623. MR 2460791, DOI 10.1137/070682149
- Alfio Quarteroni and Alberto Valli, Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR 1857663
- Béatrice Rivière, Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems, J. Sci. Comput. 22/23 (2005), 479–500. MR 2142206, DOI 10.1007/s10915-004-4147-3
- Béatrice Rivière and Ivan Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal. 42 (2005), no. 5, 1959–1977. MR 2139232, DOI 10.1137/S0036142903427640
- Hongxing Rui and Ran Zhang, A unified stabilized mixed finite element method for coupling Stokes and Darcy flows, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 33-36, 2692–2699. MR 2532369, DOI 10.1016/j.cma.2009.03.011
- P. Saffman, On the boundary condition at the interface of a porous medium, Stud. in Appl. Math. 1 (1971), 77–84.
- Xue-Cheng Tai and Ragnar Winther, A discrete de Rham complex with enhanced smoothness, Calcolo 43 (2006), no. 4, 287–306. MR 2283095, DOI 10.1007/s10092-006-0124-6
- Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024
- Svetlana Tlupova and Ricardo Cortez, Boundary integral solutions of coupled Stokes and Darcy flows, J. Comput. Phys. 228 (2009), no. 1, 158–179. MR 2464074, DOI 10.1016/j.jcp.2008.09.011
- J. M. Urquiza, D. N’Dri, A. Garon, and M. C. Delfour, Coupling Stokes and Darcy equations, Appl. Numer. Math. 58 (2008), no. 5, 525–538. MR 2407730, DOI 10.1016/j.apnum.2006.12.006
- Mary Fanett Wheeler, A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759. MR 351124, DOI 10.1137/0710062
- Xiaoping Xie, Jinchao Xu, and Guangri Xue, Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models, J. Comput. Math. 26 (2008), no. 3, 437–455. MR 2421892
- Jinchao Xu and Jun Zou, Some nonoverlapping domain decomposition methods, SIAM Rev. 40 (1998), no. 4, 857–914. MR 1659681, DOI 10.1137/S0036144596306800
- Xuejun Xu and Shangyou Zhang, A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations, SIAM J. Sci. Comput. 32 (2010), no. 2, 855–874. MR 2609343, DOI 10.1137/090751049
- Shiquan Zhang, Xiaoping Xie, and Yumei Chen, Low order nonconforming rectangular finite element methods for Darcy-Stokes problems, J. Comput. Math. 27 (2009), no. 2-3, 400–424. MR 2495068
- Zheming Zheng, Bernd Simeon, and Linda Petzold, A stabilized explicit Lagrange multiplier based domain decomposition method for parabolic problems, J. Comput. Phys. 227 (2008), no. 10, 5272–5285. MR 2414854, DOI 10.1016/j.jcp.2008.01.057
- Liyong Zhu, Guangwei Yuan, and Qiang Du, An explicit-implicit predictor-corrector domain decomposition method for time dependent multi-dimensional convection diffusion equations, Numer. Math. Theory Methods Appl. 2 (2009), no. 3, 301–325. MR 2605862, DOI 10.4208/nmtma.2009.m8016
- Liyong Zhu, Guangwei Yuan, and Qiang Du, An efficient explicit/implicit domain decomposition method for convection-diffusion equations, Numer. Methods Partial Differential Equations 26 (2010), no. 4, 852–873. MR 2642324, DOI 10.1002/num.20461
- Yu Zhuang, An alternating explicit-implicit domain decomposition method for the parallel solution of parabolic equations, J. Comput. Appl. Math. 206 (2007), no. 1, 549–566. MR 2337462, DOI 10.1016/j.cam.2006.08.024
- Yu Zhuang and Xian-He Sun, Stabilized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations, SIAM J. Sci. Comput. 24 (2002), no. 1, 335–358. MR 1924428, DOI 10.1137/S1064827501384755
Bibliographic Information
- Yanzhao Cao
- Affiliation: Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36830
- Email: yzc0009@auburn.edu
- Max Gunzburger
- Affiliation: Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306
- MR Author ID: 78360
- Email: gunzburg@fsu.edu
- Xiaoming He
- Affiliation: Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, Missouri 65409
- Email: hex@mst.edu
- Xiaoming Wang
- Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306
- Email: wxm@math.fsu.edu
- Received by editor(s): June 7, 2010
- Received by editor(s) in revised form: July 22, 2012
- Published electronically: February 3, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Math. Comp. 83 (2014), 1617-1644
- MSC (2010): Primary 65M55, 65M12, 65M15, 65M60, 35M10, 35Q35, 76D07, 76S05
- DOI: https://doi.org/10.1090/S0025-5718-2014-02779-8
- MathSciNet review: 3194124