## Coarse-graining schemes for stochastic lattice systems with short and long-range interactions

HTML articles powered by AMS MathViewer

- by Markos A. Katsoulakis, Petr Plecháč, Luc Rey-Bellet and Dimitrios K. Tsagkarogiannis PDF
- Math. Comp.
**83**(2014), 1757-1793 Request permission

## Abstract:

We develop coarse-graining schemes for stochastic many-particle microscopic models with competing short- and long-range interactions on a $d$-dimensional lattice. We focus on the coarse-graining of equilibrium Gibbs states, and by using cluster expansions we analyze the corresponding renormalization group map. We quantify the approximation properties of the coarse-grained terms arising from different types of interactions and present a hierarchy of correction terms. We derive semi-analytical numerical coarse-graining schemes that are accompanied by a posteriori error estimates for lattice systems with short- and long-range interactions.## References

- Reinier L. C. Akkermans and W. J. Briels. Coarse-grained interactions in polymer melts: A variational approach.
*J. Chem. Phys.*, 115(13):6210–6219, 2001. - Sasanka Are, Markos A. Katsoulakis, Petr Plecháč, and Luc Rey-Bellet,
*Multibody interactions in coarse-graining schemes for extended systems*, SIAM J. Sci. Comput.**31**(2008/09), no. 2, 987–1015. MR**2466145**, DOI 10.1137/080713276 - Rodney J. Baxter,
*Exactly solved models in statistical mechanics*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. Reprint of the 1982 original. MR**998375** - Lorenzo Bertini, Emilio N. M. Cirillo, and Enzo Olivieri,
*Renormalization-group transformations under strong mixing conditions: Gibbsianness and convergence of renormalized interactions*, J. Statist. Phys.**97**(1999), no. 5-6, 831–915. MR**1734386**, DOI 10.1023/A:1004620929047 - Anton Bovier and Miloš Zahradník,
*A simple inductive approach to the problem of convergence of cluster expansions of polymer models*, J. Statist. Phys.**100**(2000), no. 3-4, 765–778. MR**1788485**, DOI 10.1023/A:1018631710626 - M. Cassandro and E. Presutti,
*Phase transitions in Ising systems with long but finite range interactions*, Markov Process. Related Fields**2**(1996), no. 2, 241–262. MR**1414119** - A. Chatterjee, M. Katsoulakis, and D. Vlachos. Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules.
*J. Chem. Phys.*, 121(22):11420–11431, 2004. - A. Chatterjee, M. Katsoulakis, and D. Vlachos. Spatially adaptive grand canonical ensemble Monte Carlo simulations.
*Phys. Rev. E*, 71, 2005. - A Chatterjee and DG Vlachos. Multiscale spatial Monte Carlo simulations: Multigriding, computational singular perturbation, and hierarchical stochastic closures.
*J. Chem. Phys.*, 124(6), FEB 14 2006. - A. Chatterjee and D.G. Vlachos. An overview of spatial microscopic and accelerated kinetic monte carlo methods.
*J. Comput-Aided Mater. Des.*, 14(2):253–308, 2007. - Jianguo Dai, W. D. Seider, and T. Sinno. Coarse-grained lattice kinetic Monte Carlo simulation of systems of strongly interacting particles.
*J. Chem. Phys.*, 128(19):194705, 2008. - R. L. Dobrushin and S. B. Shlosman,
*Completely analytical interactions: constructive description*, J. Statist. Phys.**46**(1987), no. 5-6, 983–1014. MR**893129**, DOI 10.1007/BF01011153 - E. Espanol, M. Serrano, and Zuniga. Coarse-graining of a fluid and its relation with dissipasive particle dynamics and smoothed particle dynamics.
*Int. J. Modern Phys. C*, 8(4):899–908, 1997. - P. Espanol and P. Warren. Statistics-mechanics of dissipative particle dynamics.
*Europhys. Lett.*, 30(4):191–196, 1995. - Francesca Fierro and Andreas Veeser,
*On the a posteriori error analysis for equations of prescribed mean curvature*, Math. Comp.**72**(2003), no. 244, 1611–1634. MR**1986796**, DOI 10.1090/S0025-5718-03-01507-2 - H. Fukunaga, J. Takimoto, and M. Doi. A coarse-graining procedure for flexible polymer chains with bonded and nonbonded interactions.
*J. Chem. Phys.*, 116(18):8183–8190, 2002. - N. Goldenfeld.
*Lectures on Phase Transitions and the Renormalization Group*, volume 85. Addison-Wesley, New York, 1992. - G. Hadjipanayis, editor.
*Magnetic Hysteresis in Novel Magnetic Materials*, volume 338 of*NATO ASI Series E*, Dordrecht, The Netherlands, 1997. Kluwer Academic Publishers. - V.A. Harmandaris, N.P. Adhikari, N.F.A. van der Vegt, and K. Kremer. Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations.
*Macromolecules*, 39:6708–6719, 2006. - L. Kadanoff. Scaling laws for Ising models near $t_c$.
*Physics*, 2:263, 1966. - Markos A. Katsoulakis, Andrew J. Majda, and Dionisios G. Vlachos,
*Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems*, J. Comput. Phys.**186**(2003), no. 1, 250–278. MR**1967368**, DOI 10.1016/S0021-9991(03)00051-2 - M. A. Katsoulakis, L. Rey-Bellet, P. Plecháč, and D. K.Tsagkarogiannis. Mathematical strategies in the coarse-graining of extensive systems: error quantification and adaptivity.
*J. Non Newt. Fluid Mech.*, 152:101–112, 2008. - Markos A. Katsoulakis, Petr Plecháč, and Luc Rey-Bellet,
*Numerical and statistical methods for the coarse-graining of many-particle stochastic systems*, J. Sci. Comput.**37**(2008), no. 1, 43–71. MR**2442973**, DOI 10.1007/s10915-008-9216-6 - Markos A. Katsoulakis, Petr Plecháč, Luc Rey-Bellet, and Dimitrios K. Tsagkarogiannis,
*Coarse-graining schemes and a posteriori error estimates for stochastic lattice systems*, M2AN Math. Model. Numer. Anal.**41**(2007), no. 3, 627–660. MR**2355714**, DOI 10.1051/m2an:2007032 - Markos A. Katsoulakis, Petr Plecháč, and Alexandros Sopasakis,
*Error analysis of coarse-graining for stochastic lattice dynamics*, SIAM J. Numer. Anal.**44**(2006), no. 6, 2270–2296. MR**2272594**, DOI 10.1137/050637339 - Markos A. Katsoulakis and José Trashorras,
*Information loss in coarse-graining of stochastic particle dynamics*, J. Stat. Phys.**122**(2006), no. 1, 115–135. MR**2203785**, DOI 10.1007/s10955-005-8063-1 - K. Kremer and F. Muller-Plathe. Multiscale problems in polymer science: Simulation approaches.
*MRS Bulletin*, 26(3):205–210, 2001. - Omar Lakkis and Ricardo H. Nochetto,
*A posteriori error analysis for the mean curvature flow of graphs*, SIAM J. Numer. Anal.**42**(2005), no. 5, 1875–1898. MR**2139228**, DOI 10.1137/S0036142903430207 - David P. Landau and Kurt Binder,
*A guide to Monte Carlo simulations in statistical physics*, Cambridge University Press, Cambridge, 2000. MR**1781083** - A. P. Lyubartsev, M. Karttunen, P. Vattulainen, and A. Laaksonen. On coarse-graining by the inverse monte carlo method: Dissipative particle dynamics simulations made to a precise tool in soft matter modeling.
*Soft Materials*, 1(1):121–137, 2003. - F. Müller-Plathe. Coarse-graining in polymer simulation: from the atomistic to the mesoscale and back.
*Chem. Phys. Chem.*, 3:754, 2002. - Enzo Olivieri,
*On a cluster expansion for lattice spin systems: a finite-size condition for the convergence*, J. Statist. Phys.**50**(1988), no. 5-6, 1179–1200. MR**951074**, DOI 10.1007/BF01019160 - Enzo Olivieri and Pierre Picco,
*Cluster expansion for $d$-dimensional lattice systems and finite-volume factorization properties*, J. Statist. Phys.**59**(1990), no. 1-2, 221–256. MR**1049968**, DOI 10.1007/BF01015569 - I. Pivkin and G. Karniadakis. Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems.
*J. Chem. Phys.*, 124:184101, 2006. - R. Plass, J.A. Last, N.C. Bartelt, and G.L. Kellogg. Self-assembled domain patterns.
*Nature*, 412:875, 2001. - M. Praprotnik, S. Matysiak, L. Delle Site, K. Kremer, and C. Clementi. Adaptive resolution simulation of liquid water.
*J. Physics: Condensed Matter*, 19(29):292201 (10pp), 2007. - M. Seul and D. Andelman. Domain shapes and patterns: the phenomenology of modulated phases.
*Science*, 267:476–483, 1995. - Barry Simon,
*The statistical mechanics of lattice gases. Vol. I*, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1993. MR**1239893**, DOI 10.1515/9781400863433 - José Trashorras and Dimitrios K. Tsagkarogiannis,
*From mesoscale back to microscale: reconstruction schemes for coarse-grained stochastic lattice systems*, SIAM J. Numer. Anal.**48**(2010), no. 5, 1647–1677. MR**2733093**, DOI 10.1137/080722382 - W. Tschöp, K. Kremer, O. Hahn, J. Batoulis, and T. Bürger. Simulation of polymer melts. II. From coarse-grained models back to atomistic description.
*Acta Polym.*, 49:75, 1998. - G.A. Voth.
*Coarse-Graining of Condensed Phase and Biomolecular Systems*. CRC Press, Boca Raton, FL, 2009.

## Additional Information

**Markos A. Katsoulakis**- Affiliation: Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003 and Department of Applied Mathematics, University of Crete and Foundation of Research – and — Technology-Hellas, Greece
- Email: markos@math.umass.edu
**Petr Plecháč**- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- Email: plechac@math.udel.edu
**Luc Rey-Bellet**- Affiliation: Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003
- Email: lr7q@math.umass.edu
**Dimitrios K. Tsagkarogiannis**- Affiliation: Hausdorff Center for Mathematics, University of Bonn, D-53115 Bonn, Germany
- Email: dtsagkaro@gmail.com
- Received by editor(s): March 8, 2010
- Received by editor(s) in revised form: March 22, 2011, and November 9, 2011
- Published electronically: March 25, 2014
- Additional Notes: The research of the first author was supported by the National Science Foundation through grants NSF-DMS-0715125, the CDI -Type II award NSF-CMMI-0835673, and the European Commission FP7-REGPOT-2009-1 project “Archimedes Center for Modeling, Analysis and Computation”

The research of the second author was partially supported by the National Science Foundation under grant NSF-DMS-0813893 and by the Office of Advanced Scientific Computing Research, U.S. Department of Energy under DE-SC0001340; the work was partly done at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725

The research of the third author was partially supported by grant NSF-DMS-06058

The research of the fourth author has been supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Program - © Copyright 2014 American Mathematical Society
- Journal: Math. Comp.
**83**(2014), 1757-1793 - MSC (2010): Primary 65C05, 65C20, 82B20, 82B80, 82-08
- DOI: https://doi.org/10.1090/S0025-5718-2014-02806-8
- MathSciNet review: 3194129