Lattice approximation for stochastic reaction diffusion equations with one-sided Lipschitz condition
HTML articles powered by AMS MathViewer
- by Martin Sauer and Wilhelm Stannat PDF
- Math. Comp. 84 (2015), 743-766 Request permission
Abstract:
We consider strong convergence of the finite differences approximation in space for stochastic reaction diffusion equations in one dimension with multiplicative noise under a one-sided Lipschitz condition only. The equation may be additionally coupled with a noisy control variable with global Lipschitz condition but no diffusion. We derive convergence with an implicit rate depending on the regularity of the exact solution. This can be made explicit if the variational solution has more than its canonical spatial regularity. As an application, spatially extended FitzHugh-Nagumo systems with noise are considered.References
- Stefano Bonaccorsi and Elisa Mastrogiacomo, Analysis of the stochastic FitzHugh-Nagumo system, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008), no. 3, 427–446. MR 2446518, DOI 10.1142/S0219025708003191
- Erich Carelli and Andreas Prohl, Rates of convergence for discretizations of the stochastic incompressible Navier-Stokes equations, SIAM J. Numer. Anal. 50 (2012), no. 5, 2467–2496. MR 3022227, DOI 10.1137/110845008
- G. Bard Ermentrout and David H. Terman, Mathematical foundations of neuroscience, Interdisciplinary Applied Mathematics, vol. 35, Springer, New York, 2010. MR 2674516, DOI 10.1007/978-0-387-87708-2
- R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1:445–466, 1961.
- R. FitzHugh, Mathematical Models of Excitation and Propagation in Nerve. In Biological Engineering, McGraw-Hill, New York, 1969.
- István Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II, Potential Anal. 11 (1999), no. 1, 1–37. MR 1699161, DOI 10.1023/A:1008699504438
- István Gyöngy and Annie Millet, On discretization schemes for stochastic evolution equations, Potential Anal. 23 (2005), no. 2, 99–134. MR 2139212, DOI 10.1007/s11118-004-5393-6
- István Gyöngy and Annie Millet, Rate of convergence of space time approximations for stochastic evolution equations, Potential Anal. 30 (2009), no. 1, 29–64. MR 2465711, DOI 10.1007/s11118-008-9105-5
- Erika Hausenblas, Numerical analysis of semilinear stochastic evolution equations in Banach spaces, J. Comput. Appl. Math. 147 (2002), no. 2, 485–516. MR 1933610, DOI 10.1016/S0377-0427(02)00483-1
- A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117:500–544, 1952.
- Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden, Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), no. 2130, 1563–1576. MR 2795791, DOI 10.1098/rspa.2010.0348
- Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, Ann. Appl. Probab. 22 (2012), no. 4, 1611–1641. MR 2985171, DOI 10.1214/11-AAP803
- Arnulf Jentzen, Pathwise numerical approximation of SPDEs with additive noise under non-global Lipschitz coefficients, Potential Anal. 31 (2009), no. 4, 375–404. MR 2551596, DOI 10.1007/s11118-009-9139-3
- James Keener and James Sneyd, Mathematical physiology, Interdisciplinary Applied Mathematics, vol. 8, Springer-Verlag, New York, 1998. MR 1673204
- Gabriel J. Lord and Jacques Rougemont, A numerical scheme for stochastic PDEs with Gevrey regularity, IMA J. Numer. Anal. 24 (2004), no. 4, 587–604. MR 2094572, DOI 10.1093/imanum/24.4.587
- Di Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise, Commun. Math. Sci. 1 (2003), no. 2, 361–375. MR 1980481
- Wei Liu and Michael Röckner, SPDE in Hilbert space with locally monotone coefficients, J. Funct. Anal. 259 (2010), no. 11, 2902–2922. MR 2719279, DOI 10.1016/j.jfa.2010.05.012
- Roger Pettersson and Mikael Signahl, Numerical approximation for a white noise driven SPDE with locally bounded drift, Potential Anal. 22 (2005), no. 4, 375–393. MR 2135265, DOI 10.1007/s11118-004-1329-4
- Claudia Prévôt and Michael Röckner, A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007. MR 2329435
- Tony Shardlow, Numerical methods for stochastic parabolic PDEs, Numer. Funct. Anal. Optim. 20 (1999), no. 1-2, 121–145. MR 1683281, DOI 10.1080/01630569908816884
- Tony Shardlow, Numerical simulation of stochastic PDEs for excitable media, J. Comput. Appl. Math. 175 (2005), no. 2, 429–446. MR 2108585, DOI 10.1016/j.cam.2004.06.020
- Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
- Henry C. Tuckwell, Analytical and simulation results for the stochastic spatial FitzHugh-Nagumo model neuron, Neural Comput. 20 (2008), no. 12, 3003–3033. MR 2467646, DOI 10.1162/neco.2008.08-07-585
Additional Information
- Martin Sauer
- Affiliation: Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany
- MR Author ID: 1016033
- Email: sauer@math.tu-berlin.de
- Wilhelm Stannat
- Affiliation: Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany and Bernstein Center for Computational Neuroscience, Philippstr. 13, D-10115 Berlin, Germany
- MR Author ID: 357144
- Email: stannat@math.tu-berlin.de
- Received by editor(s): January 27, 2013
- Received by editor(s) in revised form: July 22, 2013
- Published electronically: August 12, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 84 (2015), 743-766
- MSC (2010): Primary 60H15, 60H35; Secondary 35R60, 65C30, 92C20
- DOI: https://doi.org/10.1090/S0025-5718-2014-02873-1
- MathSciNet review: 3290962